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MOTIVATION

CONTRIBUTION: propose a new penalized synthetic control method
for policy evaluation.

• Variable Selection: identify which predictors should not be used
in building the synthetic control.

• Allows researchers to not have to search for predictors.
• Performance: achieves lower BIAS and MSE in sparse settings.
• Just for this workshop: REDD+ and carbon offsets!

OUTLINE:

1. Overview of Synthetic Controls.
2. Related Literature.
3. The Sparse Synthetic Control.
4. Variable Selection Result.
5. Simulation Study.
6. Empirical application.
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SYNTHETIC CONTROLS OVERVIEW

SYNTHETIC CONTROLS are a method to estimate the effects of large
scale interventions using aggregate data.

• We observe J+ 1 units for T periods.
• There is an aggregate intervention that affects unit one during
periods T0 + 1, . . . , T.

• The other J unaffected units are our donor pool.
• Outcome variable Yit with potential outcomes N, I.
• Predictors: k× (J+ 1) matrix X = [X1, X0] of pre-intervention
characteristics of the units.

We are interested in a TET for t > T0:

τ1t = YI1t − YN1t.
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SYNTHETIC CONTROLS EXAMPLE I

A classic example in Abadie et al. 2010 is the passage of proposition 99 in
California.

• The donor units are the other states.

• The predictors are important variables for cigarette consumption.
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SYNTHETIC CONTROLS EXAMPLE II

Recent media attention on carbon offsets impact on reducing deforestation
using SC (The Guardian).

• Thales et al. 2020 (PNAS) compare regions with REDD+ (reducing
emissions from deforestation and forest degradation) projects with
control regions.

• Outcome: cumulative deforestation (sq. kms).
• Predictors: soil, infrastructure, agriculture, hydrology etc. (up to 18)
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SYNTHETIC CONTROLS EXAMPLE II

Thales et al. 2020 find that in general the REDD+ projects did not decrease
deforestation.
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HOW TO BUILD SYNTHETIC CONTROLS?

A SYNTHETIC CONTROL is defined by a weight vector
W = (W2, . . . ,WJ+1)

′ such that
∑

jWj = 1 and Wj ≥ 0.

• We choose W to minimize:

∥X1 − X0W∥V =

( k∑
h=1

vh(Xh1 −W2Xh2 − · · · −WJ+1XhJ+1)2
)1/2

,

subject to the weight constraints.
• Intuitively, the W weights recreate the treated unit in the
predictor space.

• Predictor Weights: The researcher can choose v1, . . . , vk or use a
data-driven procedure.

Synthetic control estimator for t > T0:

τ̂1 = Y1t −
J+1∑
j=2

W∗
j Yjt.
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SO WHAT IS THE PROBLEM?

• The choice of predictor set matters: like OVB if we don’t match
relevant predictors the SC is biased!

• The matching problem may be hard: the more predictors we
have to match the worse the finite sample properties of SC.

• Predictor choice opens the door for specification search.

Questions: How do you choose predictors? Can I just put them all in?
What about interactions? What about time-varying covariates?
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SYNTHETIC CONTROL EXAMPLE II

• 18 predictors vs. 172 interactions (’+’)
• Sparse Synthetic Control is robust to predictor size
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THE SPARSE SYNTHETIC CONTROL I

• Training set (Xtrain0 , Xtrain1 , Ytrain0 , Ytrain1 ) for t ∈ {1, . . . , Tv}.

• Validation set (Xval0 , Xval1 , Yval0 , Yval1 ) for t ∈ {Tv + 1, . . . , T0}.

The SPARSE SYNTHETIC CONTROL solves

• Upper level problem:

(V∗,w∗) ∈ argminV,wLV(V,w, λ) =
1
Tval

∥Yval1 − Yval0 w(V)∥2 + λ∥V∥1,

s.t. w(V) ∈ ψ(V), V ∈ RK
+.

• Lower level problem:

ψ(V) ≡ argminw∈WLW(V,w) = ∥Xtrain1 − Xtrain0 w∥2V,

where,

w ∈ W ≡
{
w ∈ RJ | 1′w = 1, wj ≥ 0, j = 2, . . . , J+ 1

}
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THE SPARSE SYNTHETIC CONTROL II

Algorithm 0: Sparse Synthetic Control
Result: w∗,V∗
Data: (Xtrain0 , Xtrain1 , Ytrain0 , Ytrain1 ), (Xtrain0 , Xtrain1 , Yval0 , Yval1 )

1 set vk0= 1;
2 initialize vk for k ̸= k0 to (Xtrain′0 Xtrain0 )−1;
3 for each λ in a grid do
4 get (Vλ,wλ) by jointly minimizing LW(V,w, λ) and LV(V,w) for

the training data;
5 s.t. w ∈ W , vk ≥ 0 ∀k ̸= k0 and vk0 = 1;
6 scale Vλ to [0, 1];
7 get w∗

λ by minimizing LW(Vλ,w, λ) for the training data;
8 store MSE(Yval1 , Yval0 w∗

λ) and Vλ;
9 end
10 choose λ∗ with minimum MSE(Yval1 , Yval0 w∗

λ);
11 V∗ = Vλ∗ ;
12 get w∗ by minimizing LV(V∗λ,w) for the shifted training data.a

aThe shifted training data is the training data but with time dependent variables
shifted to the Tv periods before T0 .
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RELATED LITERATURE

• Classic synthetic controls: Abadie and Gardeazabal (2003),
Abadie, Diamond and Hainmueller (2010, 2015).

• About the donor weights:
• Dis-aggregated synthetic controls: Abadie and L’Hour (2019), Athey
et al. (2018), Gunsilius (2020), Gardeazabal and Vegayo (2017).

• Penalized synthetic Controls: Abadie and L’Hour (2019),
Doudchenko and Imbens (2017), Chernozhukov et al. (2019a),
Arkhangelsky et al. (2019), Quistorff et al. (2020).

• About the predictor weights: Klosner et al. (2018), Abadie (2020),
Ben-Michael et al. (2018).

• Model selection: Pouliot and Xie (2021).

=⇒ FOCUS: How to choose the V weights to improve performance
and do variable selection.
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VARIABLE SELECTION I

Linear factor model

YNit = δt + θtZi + λtµi + ϵit.

• Zi is a (k× 1) vector of observed features.
• λt is a (1× F) vector of unobserved common factors.

Sparse representation:

• θt is partitioned conformably into (θ̃t,0)′ where θ̃t is a (k1 × 1)
vector of non-zero parameters.

• Zi = (Z1i , Z2i ), where Z2i is k2 × 1 vector such that k = k1 + k2.

Variable selection is important because:

1. Only using the ”useful” predictors improves fit and lowers bias.
2. Researchers need not choose predictors (specification search).
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VARIABLE SELECTION II

Oracle covariate match: For fixed J, let the oracle weights be defined
by

w∗ ∈ argminw∈∆JE∥Y1 − Y0w∥2.
We consider two assumptions:

1. For all k ∈ S = {k | θtk = 0 for all t}, |Z1k − Z′Jkw∗| > 0.
2. (1) holds true and for l ∈ Sc, |Z1l − Z′Jlw∗| = 0.

Theorem: Variable Selection
Under technical assumptions if ψ is an injective function and λ̂→ 0
as T0 → ∞, for a fixed k and J, as T0 → ∞ the following holds

1. If k ∈ S = {k | θtk = 0 for all t}, then P(vk = 0) → 1.
2. If (2) holds and l ∈ Sc then P(vl = 0) → 0.

where vk is the predictor weight for predictor m assigned by the
sparse synthetic control algorithm.
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WHY PREDICTORS MATTER

τ̂w1t − τ1t = θ′
t

Z1 − J+1∑
j=2

wjZj

+ λ′
t

µ1 −
J+1∑
j=2

wjµj

+
J+1∑
j=2

wj(ϵ1t − ϵjt).

Under technical assumptions:

E|τ̂w1t−τ1t| ≤
γ

T0

T0∑
m=1

E|Y1m−
J+1∑
j=2

wjYjm|+
∣∣∣∣θ̄(1− γ

T0

)∣∣∣∣ k1∑
k=1

E|Z11k−
J+1∑
j=2

wjZ1jk|+O
(
T−1
0

)
.

So, the SC bias is bounded above by:

1. Expected pre-treatment fit (rule of thumb).

2. Expected predictor fit! (like OVB)
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MSE RATES

Let Z1 = Z0w∗ + u for ui ∼ind subG(σ2z ). Then, under technical assumptions as
T0 → ∞, almost surely for the sparse synthetic control ŵ,

MSE(Z1, Z0ŵ) =
1
k∥Z1 − Z0ŵ∥2 ≲

σz
√
k1

k
√
2 log J.

For the standard synthetic control w̃,

MSE(Z1, Z0w̃) =
1
k∥Z1 − Z0w̃∥2 ≲ σz

√
2 log J
k .

1. In sparse settings, the MSE rate for the Sparse SC is faster than the
standard SC!

2. More precise estimation, lower s.e. (not easy to compute).
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SIMULATION STUDY I

We compare three synthetic control estimators:

1. The standard synthetic control (SCM).
2. The SCM with choosing V to minimize the validation fit (SCM λ = 0).
3. The Sparse synthetic control (Sparse SCM).

Under the following setting:

T = 30, T0 = 20, Tv = 10,
δt = 100,
Zi = [Z1i , Z2i ], where Z1i , Z2i ∼iid U[0, 1],

Z11 =
1
2Z

1
2 +

1
2Z

1
3,

λt follows an AR(1) with coefficient ρ = 0.5,
ϵit ∼ N(0, σ2) with σ = 0.25,
F = 7 in groups of 3 units and J+ 1 = 21,
k1 = k2 = 5 and k1 = 1, k2 = 9,
X also includes 10 lags. 16



SIMULATION STUDY II - MSES

• Smaller and more concentrated post-treatment MSEs.
• Improvement larger when k1 small with respect to k2.
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SIMULATION STUDY III - GAPS

• Better pre-treatment fit.
• Less over-fitting and closer to optimal.
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SIMULATION STUDY IV - SELECTION

• Plot for k1 = k2 = 5.
• Sparse SCM distinguishes between types of predictors.
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SIMULATION STUDY IV - STABILITY

• Evidence that ψ(V) is well behaved.
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EMPIRICAL APPLICATION I

California Proposition 99: In 1988 California increased the cigarette excise
tax by 25 cents per pack and shifted public policy towards a clean air agenda.

• Compare DID, SCM λ = 0 and Sparse SCM.

• With augmented predictors: 50 additional predictors from the IPPSR
(MSU) dataset on policy correlates. These include demographic
variables, income related variables, political participation measures
and government spending statistics.
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EMPIRICAL APPLICATION II

• 7 vs. 40 predictors (including garbage predictors)
• Sparse Synthetic Control is robust to predictor size
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EMPIRICAL APPLICATION III

DID SCM Sparse SCM SCM Sparse SCM

τ̂ estimate -27.4 -18.9 -18.5 -21.0 -18.2
V̂1/2τ (16.7) (13.2) ( 12.2 ) ( 12.9 ) ( 11.7 )
k - 7 7 40 40

Notes: variance calculated using the placebo bootstrap.

Takeaways:

• DID is badly biased (parallel trends violated).

• In the non-augmented setting SCM and Sparse SCM are similar.

• In the augmented setting the Sparse SCM does not over-fit.

• Sparse SC has lower variance (8% - 10%).
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EMPIRICAL APPLICATION IV

(a) Top 7 predictors

SCM Sparse SCM

smk_80 smk_75
general_revenue_inc incshare_top1
smk_75 smk_88
smk_88 pc_inc_ann
loginc region
general_expenditure_inc budget_surplus
pc_inc_ann taxes_gsp

(b) Predictor weight distribution

Takeaways:

• Sparse SC is more sparse.
• Sparse SC recovers the original predictors of ADH 2010.
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CONCLUSION

Recap:

• What goes into the synthetic control matters!
• Variable selection can be achieved using a simple penalized procedure.
• Benefits of automatic variable selection:

1. Avoid predictor search.
2. Improve performance and interpretability.

Future work:

• Relax theoretical assumptions.
• R package.

Other projects:

• Uniform risk consistency of shrinkage estimators.
• Bayesian and Frequentist Inference for SC as J, T0 → ∞.
• Bagged polynomial regression as an alternative for neural networks.
• Synthetic controls for experimental design. 25


