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Abstract

We propose a Synthetic Instrumental Variables (SIV) estimator for panel data

that combines the strengths of instrumental variables and synthetic controls to

address unmeasured confounding. We derive conditions under which SIV is con-

sistent and asymptotically normal, even when the standard IV estimator is not.

Motivated by the finite sample properties of our estimator, we introduce an en-

semble estimator that simultaneously addresses multiple sources of bias and pro-

vide a permutation-based inference procedure. We demonstrate the effectiveness

of our methods through a calibrated simulation exercise, two shift-share empirical

applications, and an application in digital economics that includes both observa-

tional data and data from a randomized control trial. In our primary empirical

application, we examine the impact of the Syrian refugee crisis on Turkish labor

markets. Here, the SIV estimator reveals significant effects that the standard

IV does not capture. Similarly, in our digital economics application, the SIV

estimator successfully recovers the experimental estimates, whereas the standard

IV does not.
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1. Introduction

In this paper, we propose a Synthetic Instrumental Variables (SIV) estimator that combines

instrumental variables and synthetic controls to account for bias due to unobserved con-

founding. We are interested in panel data settings in which an intervention affects a set

of units over time, but we are worried about endogeneity concerns such as the intervention

affecting units selectively or differential trends amongst units that received different doses

of the treatment. In this context, researchers may turn to differences-in-differences (DiD)

designs (Card and Krueger, 2000) or synthetic control (Abadie and Gardeazabal, 2003) de-

signs (SC) in which control units are used to evaluate the counterfactual in absence of the

intervention. While these approaches may address part of the endogeneity problems, often

valid control units may not exist, as all units may be treated, or control units and treated

units may not follow similar paths, violating the parallel trends assumption. Faced with

this challenge, we may consider an instrumental variable (IV) approach in combination with

the DiD design (for example using a shift-share instrument, e.g. Jaeger et al. (2018a)). In

practice, however, the endogeneity concerns may persist as the instrument may be corre-

lated with unobserved confounders in the outcome of interest. The SIV estimator provides

a solution to this problem.

To understand the relevance of our setting, consider the use of shift-share instrumental

variables (SSIV) to identify causal effects of a treatment or policy by comparing groups or

regions more and less exposed to the treatment. Influential examples include studies of the

effects of immigration (Card, 2001) and trade (Autor et al., 2013) on labor markets. In

this paper, our main empirical application concerns the study of the effect of immigration

on Turkish labor markets using the Syrian civil war as an exogenous shock. An intuitive

empirical strategy to address the endogeneity of immigrants’ location choice, is to use a

shift-share design where the distance to the border is the “share” and the aggregate inflow

of immigrants is the “shift.” Identification in this context relies on regions close to and away

from the border to follow parallel trends absent migration flows. The problem with such a

design is that regions close and away from the border may be on different economic trajec-

tories before the Syrian civil war starts. These differential trends may bias our estimates of

the effect of the refugees on local labor outcomes. Our proposed method, the SIV, creates

a synthetic control unit for each region in the pre-intervention period and then debiases

the outcomes of interest to account for the differential trends and correct the bias in the

two-stage least square estimator (TSLS).

We motivate our method theoretically by deriving consistency and asymptotic normality
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results in triangular panel designs with unmeasured confounding. We assume that the un-

observed error term has two components: an idiosyncratic component that is orthogonal to

the instrument and an unobserved heterogeneity component that follows a factor structure.

If we could control for the unobserved factor structure the TSLS would be consistent, but we

cannot do so directly. Our solution, the SIV, proposes synthetic controls as a way to proxy

for the unobserved confounding through interpolation. Under signal-to-noise restrictions and

weak primitive assumptions we show that the synthetic IV is consistent and asymptotically

normal when the number of units and time periods is large. Through finite sample bounds

we highlight that the proposed estimator might be especially sensitive to the noise level and

the weakness of the instrument. To guard against small sample biases of the estimator, we

propose empirical checks researchers might want to implement in practice, as well as a “dou-

bly robust” ensemble estimator that combines the synthetic IV with a projected synthetic

IV that partials out the noise. We also provide an alternative permutation based inference

procedure that is exactly valid in small samples.

We show the applicability of our method in a calibrated simulation exercise, by study-

ing the Syrian refugee crisis example, by re-visiting the effect of Chinese imports on US

manufacturing employment (Autor et al. (2013)) and by studying the effect of producer

rankings on sales in digital platforms. The simulation study shows that the synthetic IV

and ensemble estimators outperform the TSLS (with two-way fixed effects) in a variety of

settings. Furthermore, the SIV exhibits close to zero bias in settings with moderate and

small levels of noise and unmeasured confounding, and the ensemble estimator is shown to

be robust in settings with higher noise levels. In a study of the coverage of the synthetic IV

estimator confidence intervals we find that it is good in cases in which the estimator exhibits

small bias. Following the theoretical properties and the observed behavior under simulations

we recommend that researchers implement four checks (in the spirit of the best practices

detailed in Abadie and Vives-i-Bastida (2022)) when using the estimator: (1) ensuring that

the instrument is not weak after the debiasing, (2) making sure that the estimator achieves

good fit in the pre-treatment period, (3) implementing a back test to ensure the good fit

is not due to over-fitting to the idiosyncratic noise and (4) ensuring the synthetic controls

weights are dense, with no one unit receiving all the weight.

In our study of the effects of Syrian migrants on Turkish labor markets we find that

regions close to and away from the border follow different trajectories in the pre-period,

potentially biasing the estimates from a shift-share design. However, the SIV corrects for

this problem and the debiased estimates do not exhibit pre-trends. Moreover, using SIV
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leads to different conclusions, relative to the standard shift-share IV, about the effect of

immigration in the Turkish context. While the shift-share IV estimator cannot reject that

there is no effect of immigration on natives’ salaried employment, the synthetic IV estimator

finds a statistically significant negative effect. For example, using SSIV we find that a 1

percentage point (pp) increase in refugee/native ratio is associated with a 0.01 pp increase

in native salaried employment for low-skilled men, whereas using SIV we find that it causes

a, statistically significant, 0.16 pp decrease. This implies that for every 100 immigrants

that arrived to Turkey, 16 low-skilled natives lost salaried jobs. These economically and

statistically significant differences between the SSIV and SIV estimates highlight the role

of unobserved confounders in the long-standing debate about the labor market effects of

immigrants (Borjas, 2017; Peri and Yasenov, 2019).

In our re-analysis of the effect of Chinese imports on US manufacturing, we follow the

identification strategy of Autor et al. (2013). We compare regions that were more exposed

to Chinese imports based on their pre-existing industrial composition with regions that were

less exposed. We first show that the “shares” are correlated with regional growth rates in

the pre-period. Regions that were more exposed to the China shock starting from 1990 grew

less in 1970s and 1980s. In fact, the difference in growth rates in the 1970s and 1980s is

almost identical to the difference in growth rates after the China shock in 1990s and 2000s.

The SIV estimator corrects for this pre-trend, and finds smaller effects in the 1990s than the

original SSIV, but similar effects in the 2000s. This evidence implies that regional trends

between 1970–1990 account for about half of the effect the standard SSIV captures in 1990s.

This is intuitive as the economic trajectories between 1970–1990 are more likely to continue

in 1990s than 2000s. Our findings contribute to the growing literature estimating the China

shock effect under different modelling assumptions (Goldsmith-Pinkham et al., 2020).

Finally, we apply the SIV to study an important question in digital economics: how much

do rankings affect producer outcomes? In the context of a large food delivery platform we

use preferential contracts given to producers that mechanically increase their ranks in the

consumer search wall as an IV for their rank. In this context, we have at our disposal an

A/B test in which rank was randomized which allows us to benchmark our observational

estimates on the effect rank. As expected, we find that the standard IV (with two-way fixed

effects) exhibits positive omitted variable bias (relative to the A/B test) as producers that

receive the preferential contracts are in an upwards trend relative to others. The synthetic

IV estimates however do not exhibit such bias and recover the A/B test estimates. This

examples corroborates the usefulness of our proposed estimator in dealing with unmeasured

3



confounding in IV-DiD settings and provides a new strategy to measure the causal effect of

rank in digital platforms using instrumental variables. Given the challenges associated with

IVs in this context (as discussed by Rutz et al. (2012)) we see this as a contribution to the

literature in digital economics.

This paper contributes to several strands of the literature. First, it complements the

growing body of work on addressing unobserved confounding and ‘pre-trends’ in panel data

settings by providing a new method for the IV DiD case. Research in this area is built upon

synthetic control based methods (Abadie et al., 2010, 2015; Ben-Michael et al., 2021; Imbens

and Viviano, 2023), more general weighting methods such as the synthetic differences in

differences (Arkhangelsky et al., 2021a), as well as balancing methods (Hainmueller, 2012),

matrix completion methods (Agarwal et al., 2021; Athey et al., 2021) and factor model meth-

ods (Anatolyev and Mikusheva, 2022; Bai, 2009). Similarly, our paper complements related

work on addressing and evaluating pre-trends in event-study designs, including Freyalden-

hoven et al. (2019), Borusyak et al. (2023), Roth (2022) and Ham and Miratrix (2022) among

others. A more closely related paper is Arkhangelsky and Korovkin (2023) which provide

a novel weighting algorithm to address unobserved confounding in settings in which the ex-

ogenous variation comes from aggregate time series shocks. The authors propose a robust

estimator that corrects the TSLS bias when the instrument has a product form and there are

unobserved aggregate shocks that may affect different units differently. We see our method

as complementary to Arkhangelsky and Korovkin (2023), and note that we consider a dif-

ferent setting in which the instrument need not have a product structure and the exogenous

variation may come from the time or unit components.

Second, this paper is related to a growing literature studying and relaxing the identifi-

cation assumptions embedded in shift-share designs. Goldsmith-Pinkham et al. (2020) show

that the identification assumptions in SSIV designs are often based on the exogeneity of

shares. Borusyak et al. (2022) relax this assumption and provide a framework in which

identification can also come from the exogeneity of shifts, allowing shares to be endogenous.

Adao et al. (2019) highlight an inference problem that arises from cross-regional correlation

in the regression residuals due to similarity of sectoral shares in the US. de Chaisemartin

and Lei (2023) investigate a weighting problem in SSIV with heterogeneous treatment effects

and propose a robust correlated-random-coefficient panel IV estimator. In the immigration

context, Jaeger et al. (2018b) show that past-settlement instruments in practice conflate

both short-term and long-term adjustments to immigration shocks, which invalidates the

exogeneity assumption. Our method complements this literature by providing a new tool
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applied researchers can rely on to address unobserved confounding in SSIV designs.

Lastly, our main empirical example is related to a large literature studying the effects

of immigration using refugee shocks (Card, 1990; Hunt, 1992; Friedberg, 2001; Angrist and

Kugler, 2003; Lebow, 2022). More specifically, our focus on the effects of Syrian refugees on

Turkish natives and the presence of unobserved confounders in Turkey follows Gulek (2023).

Whereas he focuses on the effects on the formal and informal labor markets, we focus on the

overall impact on salaried employment and consider heterogeneity across men and women.

The paper proceeds as follows. Section 2 describes the setting and an empirical example.

Section 3 presents the synthetic IV estimator and two additional estimators. Section 4

discusses the theoretical results. Section 5 regards extensions of the estimator and inference

procedures. Section 6 concerns the simulation study, and section 7 details our three empirical

applications.

2. General setting and empirical motivation

We are interested in a panel data setting in which some units of interest are exposed to a

(potentially continuous) treatment and there are endogeneity concerns. The researcher may

be worried about using a differences-in-differences design as the parallel trends assumption

might not hold, but has access to an instrument that partially addresses the endogeneity

concerns. More precisely, we consider J units indexed by i = 1, . . . , J that are observed for T

periods of time with outcomes of interest Yit and potential outcomes denoted by Yit(Rit) for

a random variable Rit ∈ R. Throughout the paper we assume that the potential outcomes

are generated as described by the following assumption.

Assumption 1 (Design). Outcomes follow

Yit(Rit) = θRit + Uit + ϵit

where Yit, Rit, and Zit are observed and Uit = µ′
iFt, for a k × 1 vector of factor loadings µi

and a vector of common factors Ft, and ϵit are unobserved. The treatment Rit follows

Rit = γZit + Ait + ηit,

where Zit is an instrument satisfying that Zit = 0 for t ≤ T0, Ait is an unobserved het-

erogeneity term and ηit is an idiosyncratic shock potentially correlated with the error term

ϵit.
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The main feature of the panel triangular design we consider in Assumption 1 is that the in-

strument Zit is not active for t ≤ T0 and the unobserved components are additively separable

into unobserved heterogeneity components (Uit and Ait) and idiosyncratic error components

(ϵit and ηit). The design reflects settings in which an observed intervention starts at T0 and

is used as an instrument or to construct an instrument Zit. For example, shift-share designs

satisfy this setting as Zit = Z ′
iHt for shares Zi and shifts Ht with Ht = 0 for t ≤ T0. This

will be the case for our application to the China shock study. Panel instrumental variable

designs in which the instrument becomes active after T0 (i.e. Zit = 0 for t ≤ T0) also satisfy

this setting, and this will be the case of our digital economics application. A special instance

of our design is Rit = 0 for t ≤ T0 (i.e. Ait = ηit = 0 for t ≤ T0), which is satisfied in our

main empirical application to the Syrian refugee crisis, as well as for common frameworks

considered in the literature of IV-DID.

The parameter of interest is the expected marginal effect of the treatment Rit on the

outcome Yit,

θ = E
[
∂Yit(Rit)

∂Rit

]
=

∂Yit(Rit)

∂Rit

.

To understand the potential problems arising in the estimation of θ; it is useful to consider

the possible identifying assumptions researchers may posit. To this end Figure 1 describes

different assumptions on our design encoded in directed graphs. In this paper, we relax the

standard IV independence assumption by allowing the instrument to be correlated with the

unobserved term Uit as described in panel (a) of Figure 1 and Assumption 2.

Assumption 2 (Partial instrument exogeneity). The following independence conditions hold

ϵit, ηit, Ait ⊥ Zit.

Tu put in context Assumption 2 we consider alternative assumptions researchers may

posit. Researchers may consider the independence assumption Rit ⊥ ϵit, Uit (panel (c) in

Figure 1) which in our design is satisfied when Ait, Zit, ηit ⊥ ϵit, Uit pairwise. This assumption

is not implied by Assumption 2, but if it holds, then the OLS estimator of θ is unbiased and

the researcher could recover θ by regressing Y on R. In many empirical settings, however, Rit

is likely correlated with the unobserved components. For example, in immigration settings

refugees might take into account local labor market conditions and trends when choosing

where to re-locate or alternatively may relocate based on geographical distance. Researchers

may therefore rely on instrument Zit to address this concern. Common instruments in

the immigration literature to address location choice endogeneity include past-settlement

indicators or travel distance (Card, 2001; Angrist and Kugler, 2003).
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Figure 1: Triangular designs

(a) General design (b) IV design

(c) OLS design (d) Proxy design

Notes: Directed acyclic graphs representing the independence assumptions implicit for different designs.

Variables shaded grey are unobserved.

A valid instrument requires that (1) the only channel affecting the outcome Y is through

the treatmentR (the exclusion restriction) and (2) that the instrument is as good as randomly

assigned. In our design, this would require that ϵit, ηit, Uit, Ait ⊥ Zit, which is also not implied

by Assumption 2, as reflected in panel (b) in Figure 1. We are interested in cases in which

the instrument Zit is not perfectly valid due to failing to be as good as randomly assigned.

This may be the case in some relevant empirical settings. For instance, in immigration

examples regions that received immigrants in the past or were closer to the immigrants’

origin may follow different trends than other regions. Given that models of migrant location

decisions (Llull (2017), Bartel (1989)) often involve agents taking expectations over both

settling costs and the economic returns of settling in a particular region; it is likely that

a single instrument Zit may not simultaneously address both sets of endogenous variables.

However, we may believe that the instrument Zit is valid for one set of variables (settling

costs for example) and that the design would be valid if we could control for economic trends.
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In other words, the researcher may believe there exists an omitted variable that is correlated

with the instrument and the outcome of interest. This motivates us to relax the instrument

independence conditions as posited in Assumption 2 to distinguish between the unobserved

component ϵit unrelated to the instrument from the unobserved heterogeneity component

Uit.

Assumptions 1 and 2 imply that the instrument Zit correctly addresses the endogeneity

problem due to the unobserved component ϵit, but not the omitted variable bias due to Uit.

If we could observe Uit, we would control for it and the IV design would be valid. However,

Uit is unmeasured and, therefore, the statistical problem we consider is that of finding a valid

proxy control Ûit for Uit (as depicted in panel (d) of Figure 1). Different approaches have

been considered in the literature to tackle this problem. If additional variables are available,

strategies have been proposed to combine the observed variables and the instrument to proxy

for Uit directly (see Miao et al. (2018) and Deaner (2021)). If there exists a donor pool of

units never exposed to the treatment R, researchers may opt for a different design and use

synthetic controls to partial out Uit (Cengiz and Tekgüç, 2022). However, in many empirical

settings additional variables or additional control units are not available, and in these cases

researchers often rely on parametric assumptions to control for Uit. Common examples used

in the literature include two-way fixed effects, Uit = αi + δt, linear time trends (Wolfers,

2006), Uit = αi × t, or grouped region time fixed effects (Stephens Jr and Yang, 2014;

Bonhomme and Manresa, 2015), Uit = αgδt for region groups g. The choice of parametric

form is often driven by domain knowledge, or, when possible, by showing that the instrument

Zit is not correlated with the outcome in the pre-treatment period (see Danieli et al. (2024)

for a review of IV falsification tests).

In this paper, we propose a strategy to directly use the pre-treatment period (t ≤ T0) to

flexibly control for Uit without estimating a specific functional form. Our proposed method,

the synthetic IV, uses the pre-treatment period to estimate synthetic control weights that

interpolate across units to partial out Uit in the post-treatment period (t > T0). The idea

of using the pre-treatment period as a way to address an omitted variable bias in panel IV

estimates is not completely novel, and this is often done in IV-DID settings by instrument-

ing the difference of outcomes before and after treatment (sometimes called the differences

in Wald estimator). However, the validity of this approach still relies on strong parametric

assumptions on Uit, for example Danieli et al. (2024) show for that for a binary setting under

the parallel trends assumption (which implicitly imposes that Uit = αi+δt), the differences in

Wald estimator is an unbiased estimator for θ. The method we propose works for continuous
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treatments and instruments, and is valid under more general functional forms; linear factor

models Uit = µ′
iFt. Given that many economic trend variables can be described through an

interactive factor structure we believe that our method can be quite useful to researchers to

flexibly control for unmeasured confounding and prevent the specification search over differ-

ent fixed effect combinations. Furthermore, linear factor model assumptions are common in

the literature for dealing with unmeasured confounding in panel settings. A related paper

that also relies on a factor model structure is Arkhangelsky and Korovkin (2023) in which an

aggregation scheme based on Arkhangelsky et al. (2021b) is used to control for unmeasured

aggregate confounders between a time series instrument Zt and a panel outcome Yit. We

see our paper as complementing the novel work of Arkhangelsky and Korovkin (2023) for

cases in which we have a panel instrument Zit and our identifying assumptions may come

from unit level variation in the instrument or from time series variation, which include the

commonly used shift-share designs.

Example 1 (the Syrian refugee crisis) To further motivate why the setting described

under Assumptions 1-2 and in Figure 1 is relevant to applied work, consider our main

empirical example: the effect of the Syrian refugee crisis on Turkey’s local labor markets.

The Syrian civil war started in March 2011 and by 2017, 6 million Syrians had sought

shelter outside of Syria with 3.5 million locating in Turkey.1 Figure 2 panel (a) shows

the growth in the number of Syrian refugees in Turkey over time and panel (b) shows the

geographic dispersion of the refugees. Given the structure of the Syrian refugee shock a

natural approach to estimating the impact of refugees on local labor outcomes is that of a

shift-share instrumental variable design that exploits the exogenous time shock of the civil

war and the differential impact across units.

To relate the Syrian example to our setting let Rit denote the refugee/native ratio at

province-year level and consider a travel distance shift-share instrument, as is common in

the mass-immigration literature (Angrist and Kugler, 2003; Aksu et al., 2022).

Zit = H̄t︸︷︷︸
shift

× Zi︸︷︷︸
share

,

Zi =
13∑
s=1

λs
1

di,s

where H̄t is the number of refugees in Turkey in year t, di,s is the travel distance between

1Turkey hosts the largest number of refugees in the world (UNHCR, 2021).
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Figure 2: The Syrian refugee shock.
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Notes: In event-study designs the 95% confidence intervals are plotted. The F-stat of the main first-stage
regression is 154. In Panels (c) and (d) the x axis shows the years 2004-2016 in 2 digit notation.
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Turkish region i and Syrian governorate s, λs is the weight given to Syrian governorate s

which we set it be proportional to the population share of s.2 In panel (c) of Figure 2 we

plot the first stage coefficients interacted with time dummies from the TWFE specification

that is commonly estimated in the literature

Rit =
∑

k ̸=2010

γk(1{t = k} × Zi) + αi + δt + ηit.

The first stage regression tests whether the instrument predicts refugees’ location choice

every year. As expected, distance is a strong predictor of the refugee treatment intensity.

The F -stat of the shift-share first-stage (where we regress Rit on Zit while controlling for

region and time f.e.) is 154. The problem arises when one considers the reduced form of

local wage-employment (salaried employment) of the natives that did not finish high-school

(low-skill)3 on the instrument

Yit =
∑

k ̸=2010

θk(1{t = k} × Zi) + αi + δt + ϵit, (1)

which is displayed in panel (d) of Figure 2. Between 2004–2010 (before the refugee crisis

began), the provinces closer to the border observed employment gains compared to other

regions. Being one standard deviation closer to the border predicts a wage-employment

growth of 1 pp between 2004 and 2009. Given that the regions that are predicted by the

instrument to receive immigrants were following different trends before the shock, it is likely

that the IV-DID design does not satisfy the parallel trends assumption implicit in the TWFE

specification. This suggests that there exists an unmeasured confounder Uit in the Syrian

crisis empirical setting. The appearance of pre-trends in similar designs is a common problem

in practice (Wolfers, 2006; Stephens Jr and Yang, 2014; Gulek, 2023) and has been discussed

extensively in the literature (Roth, 2022; Freyaldenhoven et al., 2019). While our main

design described by Assumption 1 considers a common, time-invariant, parameter θ, in

the Appendix (section 1.7) we extend it to a time-varying event study design like the one

considered in this example.

2The idea is that all else equal, more Syrians would be expected to come from the more populous regions.
3This is the key outcome of interest because Syrian refugees were substantially less educated compared

to the Turkish population, and hence constitute largely a low-skill immigration shock. We provide more
details about the setting in the Appendix.

11



Example 2 (the China shock) Another shift-share research design that highlights the

problem of interest is used by Autor et al. (2013) to evaluate the effect of Chinese exports

on manufacturing employment in the US. The authors are interested in the effect of US

import’s exposure to China on the growth in percent manufacturing employment (Yit) for a

US commuting zone i during a decade t. Given that import exposure is endogenous, Autor

et al. (2013) instrument it by the increase in Chinese imports by high-income countries (Zit).

It is important to note that the instrument has a shift-share structure. Therefore, we can

interact the exposure components in the instrument with time indicators to see whether they

predict changes in the outcome before the shock occurs as we did for the Syrian example. In

particular, we estimate the following reduced form regression

Yit =
∑
k

(Z̄i,h × 1{t = k})βk,h + δt + ϵit (2)

where δt is a time fixed effect, ϵit is an error term, and βk,h with h = 1990, 2000 are the event-

study estimates of interest for the two exposure measures Z̄i,h considered by the authors in

constructing the instrument Zit. In section 7.2 we explain in detail how the shift-share

instrument is constructed and replicated the main tables of Autor et al. (2013). Note, that

we do not include region fixed effects following the original paper, but in principle we could

at the cost of having to normalize one of the pre-period estimates to zero.

Figure 3 shows the event studies estimates for the reduced form regression (2). Each data

point represents a coefficient estimate for a given decade, with the intervention (the China

shock) occurring in the decade of 1990-2000. As it can be seen, for both exposure measures

it appears that before the intervention regions more affected by Chinese imports where

potentially on a downward trend in terms of manufacturing employment, raising concerns

over the exogeneity of shares assumption implicit in the shift-share design. This example

highlights that unmeasured confounding may be a common problem in shift-share designs.

Autor et al. (2013) partially address these concerns by using additional covariates to control

for the differential trends. In section 7.2 we revisit this example and show how our proposed

method can correct for the unmeasured confounding without relying on additional data.

In the following section we describe our proposed solution, the synthetic IV estimator,

that flexibly controls for the unmeasured confounder Uit.
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Figure 3: Reduced-form estimates for the China shock

Notes: Event-study estimates for (2) using the exposure components Z̄i,1990 and Z̄i,2000. The time periods
consist of four decades 1970-1980, 1980-1990, 1990-2000 and 2000-2007, with the intervention (the China
shock) occurring in the decade of 1990-2000.

3. The synthetic estimator

The synthetic estimator consists of two steps. In the first step we find synthetic controls

for each unit in a pre-period (t < T0) and generate counterfactual estimates for Yit, Rit and

Zit for a post period. In the second step, as in the standard IV estimator, we use these

counterfactual estimates to compute the first stage and reduced form estimates. To describe

the procedure, consider J units indexed by j = 1, . . . , J observed for T periods of time.

We are interested in an outcome of interest Yit with potential outcomes Yit(Rit) indexed by

random variable Rit.

Step 1: for each j ∈ {1, . . . , J} we find the synthetic control weights ŵSC
j by solving the

following program for the pre-treatment period t ∈ {1, . . . , T0}

ŵSC
j ∈ argminw∈W∥DT0

j −DT0
−j

′w∥2, (3)

for

W = {w ∈ RJ | ∥w∥1 ≤ C}, (4)

where C ∈ (0,∞) is a regularization hyper-parameter, DT0 is the J × p design matrix that

includes pre-treatment outcomes Yjt and treatments Rit for t < T0 where p = 2T0, with
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DT0
j denoting the predictors for unit j and DT0

−j the (J − 1)× p matrix of predictors for the

other units.4 The intuition for matching outcomes and treatments is that the finite sample

behavior of the estimator will depend on the pre-treatment fit of Rit and Yit. In the case

in which Rit is not present in the pre-period, as is the case of the Syrian refugee example

(2), the design matrix includes only the pre-treatment outcomes, such that DT0 = Y T0 .

The l1 norm constraint on the weights ensures that there is some amount of regularization.

This program is a relaxation of the standard synthetic control objective, sometimes called

the constrained lasso (Doudchenko and Imbens, 2016). In our empirical applications, we

compute the weights using the standard synthetic control restriction that the weights are in

the simplex (i.e. W = {w | wj ≥ 0,
∑

j wj = 1}). Our theoretical results will be valid

for this case when C = 1 is chosen in solving program (3). We find in the simulations, and

empirical exercises, that the additional regularization provided by the simplex restrictions

offers good finite sample performance.

Once the synthetic control weights are computed, we define the following quantities for

all t in 1, . . . , T

Ŷ SC
it =

∑
j ̸=i

ŵSC
ij Yjt,

R̂SC
it =

∑
j ̸=i

ŵSC
ij Rjt,

ẐSC
it =

∑
j ̸=i

ŵSC
ij Zjt,

which we label the synthetic outcome, treatment level and instrument respectively. Then,

we define the debiased values for t > T0 as the difference between the observed values and

the synthetic values

Ỹit = Yit − Ŷ SC
it ,

R̃it = Rit − R̂SC
it ,

Z̃it = Zit − ẐSC
it .

Step 2: Given {Ỹit, R̃it, Z̃it}Tt=T0+1, we estimate the first stage and reduced form by pooled

4Researchers may choose to weight the columns of the design matrix DT0 according to different weights,
as proposed by Abadie et al. (2010).
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OLS regression

π̃ ∈ argmin
π

(Ỹ − Z̃π)′(Ỹ − Z̃π),

β̃1 ∈ argmin
β

(R̃− Z̃β)′(R̃− Z̃β).

where Ỹ = vec(Ỹ T ), R̃ = vec(R̃T ) and Z̃ = vec(Z̃T ) are the (J(T − T0) × 1 vectors of the

debiased values. Then, the estimated average marginal effect is given by the standard IV

estimate

θ̃SIV =
π̃

β̃1

,

which we denote the synthetic IV estimator. Given that our framework is a just-identified

IV design, the IV estimator is equivalent to the two-stage least-squared estimator (TSLS)

given by

θ̃TSLS =

(∑
it

Z̃itR̃it

)−1∑
it

Z̃itỸit.

Our main asymptotic results are also valid for the estimator that uses the instrument Zit

instead of the de-biased instrument Z̃it

θ̃TSLS
Y R =

(∑
it

ZitR̃it

)−1∑
it

ZitỸit,

and the estimator that only debiases the instrument Zit

θ̃TSLS
Z =

(∑
it

Z̃itRit

)−1∑
it

Z̃itYit.

In the theory and simulation sections we show that while these estimators are similar to the

proposed synthetic IV estimator (SIV), they may have worse finite sample properties. To

understand the differences between the standard IV and the SIV, we expand the debiased
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variable Ỹit in terms of R̃it

Ỹit = Yit − Ŷ SC
it

= θRit + µ′
iFt + ϵit −

∑
j ̸=i

ŵSC
ij Yjt

= θR̃it + (µi −
∑
j ̸=i

ŵSC
ij µj)

′Ft + ϵit −
∑
j ̸=i

ŵSC
ij ϵjt.

(5)

It follows that the synthetic IV estimator for the regression of Ỹ on R̃ instrumented by Z̃

for t > T0 recuperates the true parameter θ up to two potential bias terms.

θ̃TSLS =

(∑
i,t>T0

Z̃itR̃it

)−1 ∑
i,t>T0

Z̃itỸit

= θ +

(∑
i,t>T0

Z̃itR̃it

)−1 ∑
i,t>T0

Z̃it

(
µi −

∑
j ̸=i

ŵSC
ij µj

)′

Ft

+

(∑
i,t>T0

Z̃itR̃it

)−1 ∑
i,t>T0

Z̃it

(
ϵit −

∑
j ̸=i

ŵSC
ij ϵjt

)
.

(6)

Similarly, the standard TSLS estimator θ̂TSLS can also be decomposed

θ̂TSLS = θ +

(∑
i,t>T0

ZitRit

)−1 ∑
i,t>T0

Zitµ
′
iFt +

(∑
i,t>T0

ZitRit

)−1 ∑
i,t>T0

Zitϵit. (7)

In both cases, the bias in estimating θ will depend on a term involving the unobserved

factor structure µ′
iFt and a term involving the idiosyncratic error term ϵit. Under the partial

instrument validity Assumption (2) we might expect the term involving Zitϵit to be close

to zero in probability under suitable assumptions, but the term involving µ′
iFt will cause

omitted variable bias in the IV estimates. The intuition for the SIV estimator is that if

the partialling out procedure successfully removes the µ′
iFt term, thanks to the synthetic

controls matching the factor loading µi for each unit, then there is no omitted variable bias.

In section 4 we give conditions on the model primitives under which this is the case and the

SIV estimator is consistent.

Common synthetic control weights The decompositions (5) and (6) clarify why it

is necessary that a common set of synthetic control weights ŵSC
i is used to generate the
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debiased outcomes Ỹ and treatments R̃. Suppose, that instead different weights w1 and w2

were used in constructing Ỹit and R̃it. Let Ỹ
w
it , R̃

w
it and Zw

it denote the debiased quantities in

which weights w were used. In this case, the SIV estimator has the following decomposition

θ̃TSLS
Z =

(∑
i,t>T0

Z̃itR̃
w2

it

)−1∑
it

Z̃itỸ
w1

it

= θ

(∑
i,t>T0

Z̃itR̃
w2

it

)−1∑
it

Z̃itR̃
w1

it

+

(∑
i,t>T0

Z̃itR̃
w2

it

)−1 ∑
i,t>T0

Z̃it

(
µi −

∑
j ̸=i

w1
ijµj

)′

Ft

+

(∑
i,t>T0

Z̃itR̃
w2

it

)−1 ∑
i,t>T0

Z̃it

(
ϵit −

∑
j ̸=i

w1
ijϵjt

)
.

(8)

The problem of using different weights is that the SIV estimator will estimate θ up to the

term G =
(∑

i,t>T0
Z̃itR̃

w2

it

)−1∑
it Z̃itR̃

w1

it , which unless w1 = w2 may not be one in finite

samples, and, in general, may not converge to one.

The focus of this paper is not to describe what parameters can be identified in this set-

ting in terms of potential outcomes, as we consider the marginal effect defined in section

2. It is possible, however, to derive latent average treatment effect characterization in the

case of discrete valued instruments and treatments under a modification of the standard

monotonicity assumption. See Mogstad and Torgovitsky (2024) for an in-depth discussion

of unobserved heterogeneity in treatment effect in IV models, and for discussion of identi-

fication in related IV difference-in-difference settings see Borusyak and Hull (2020). For a

discussion of identification of continuous treatment effects in DiD designs we refer readers

to de Chaisemartin et al. (2024).

Example 1 (applying the SIV) We show how the synthetic IV estimator works by

applying it to the Syrian refugee example. We proceed with the first step by computing the

synthetic control weights for each Turkish region by solving problem (3) with W = {w |
wj ≥ 0,

∑
j wj = 1}.5 We then compute the debiased variables {Ỹit, R̃it, Z̃it}Tt=T0+1 and

5As an additional step, we normalize the outcome variable Y before solving for the weights.

17



Figure 4: Comparing IV and SIV for the Syrian refugee shock.

(a) Salaried employment. (b) Salaried employment for men.

Notes: panel (a) shows the event-study estimates for regressions 1 and 9 for the shift-share IV and SIV for
salaried employment respectively; it replicates panel (d) in Figure 2 for the SIV. Panel (b) shows the same
event-study estimates for salaried employment for men. Two SIV estimators are estimated, SIV train 04-10
uses all the pre-treatment periods to compute the synthetic weights in program (3), while SIV train 04-07
only uses the first 4 time periods.

estimate the reduced form regression (1) with the debiased data

Ỹit =
∑

k ̸=2010

θ̃k(1{t = k} × Z̃i) + αi + δt + ϵit, (9)

where Z̃i is the debiased instrument share component. In panel(a) of Figure 4 we plot the

event study estimates for salaried employment as we did in Figure 2. As we saw before, the

IV estimator (green circles) exhibits large pre-trends, but the SIV estimator (blue triangles)

does not. To check that indeed the absence of pre-trends for the SIV estimator is not due to

over-fitting to the pre-treatment period idiosyncratic noise (ϵit), we also estimate a backdated

SIV in which only a subset of the pre-treatment periods is used in estimating the weights

in program (3). The backdated SIV (in orange squares) also shows no pre-trends, providing

evidence that the synthetic IV estimator is successfully capturing the unobserved Uit term.

In the following sections, we highlight the theoretical properties of the SIV estimator and

other empirical checks, such backdating, researchers can do to check that robustness of

the estimator. In the Appendix (section 1.7), we extend the theoretical results for the SIV

estimator to the event study design considered in this example and the empirical applications.

A feature of the synthetic IV estimator is that it accounts for unmeasured confounding
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that may change over time, and, crucially, differentially before and after the intervention at

T0. This can be seen in Figure 4. In panel (a), while the SIV accounts for the pre-trends

before T0, the estimates after T0 see changes smaller in magnitude relative to the pre-trend

size and non-linear in time, with effects increasing at the start of the post-treatment period

and decreasing at the end of the period. If researchers had estimated a linear trend instead

(Uit = αi × t) as is common in the literature, the post-treatment estimates would have

been shifted downwards significantly. The flexibility of the SIV allows for cases in which

the trend in the post-treatment period might be different, for example if we believe Turkish

regions close to Syria are in growing path (catching up to richer regions) we might expect the

confounding to be smaller in the post-treatment period. Furthermore, the SIV also allows

flexibility in functional form across outcomes. In panel (b) of Figure 4 we show the event-

study estimates for a different outcome, formal salaried employment for men. While the

pre-trends for this outcome are similar than for salaried employment, the SIV post-treatment

estimates are shifted downwards uniformly. In section 7.1 we revisit this empirical example

and show that SIV can make a real difference compared to the standard IV in estimating

the effects of refugees on several local labor outcomes. To preview the results, a researcher

using IV would find no effect on natives’ or men’s salaried employment. Using SIV, however,

we find a statistically significant negative effect for both outcomes. We discuss the relevance

of these findings in section 7.1.

In sections 4 and 6 we discuss the theoretical properties of the synthetic IV estimator

and investigate its finite sample properties through simulations. We highlight that in well

behaved settings with low noise but significant correlation between the instrument and the

unobserved factor structure the SIV estimator can provide reliable estimates of the true

effect. In section 7 we re-visit our three empirical applications using the SIV estimator.

4. Theoretical Results

In this section we provide theoretical guarantees for the SIV estimator. To characterize

the behavior of the standard IV and the synthetic IV estimators it is key to understand

the behavior of the terms involving the unobserved factor µi in decompositions (6) and (7).

In order to do so, we impose more structure on the primitives of the design described in

assumptions 1 and 2.

Assumption 3 (Model primitives). Assumptions on the factor structure, the error compo-

nents and the instruments are as follows.
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– The common factors are bounded such that for all t, |Flt| ≤ F̄ for l = 1, . . . , k. Fur-

thermore, the matrix FT0F
′
T0

has minimum eigenvalue ξ such that ξ/T0 > 0, where FT0

is the k× T0 matrix of common factors Ft for t ≤ T0. The factor loadings are bounded

such that for all i |µi| ≤ cµ.

– The unobserved term Ait is bounded such that for all i, t |Ait| ≤ cA. Furthermore,
1

JT1

∑
i,t>T0

Ait
p→ 0 as JT1 → ∞.

– The instrument Zit ∈ Z is bounded such that for all i, t |Zit| ≤ cz and
1

JT1

∑
i,t>T0

Z2
it

p→
QZ > 0.

– The instrument Zit and the unobserved factor structure satisfy

1

JT1

Z ′MUZ
p→ Q > 0,

as JT1 → ∞ for T1 = T − T0, where Z = vec(ZT
1 ) is a JT1 × 1 vector of instruments

and MU = I − UJT1(U
′
JT1

UJT1)
−1U ′

JT1
is the JT1 × JT1 residual maker matrix for

UJT1 = vec(UT1). Furthermore, the first stage parameter satisfies γ > 0.

– ϵit and ηit are i.i.d mean zero subGaussian random variables with variance σ2
ϵ and σ2

η

respectively, finite covariance σϵη = E[ϵitηit] and bounded fourth moments.

Assumption 3 has three parts. First, we assume that the model primitives are bounded. This

is a common assumption in papers analyzing the behavior of synthetic control estimators and

rules out weak factors. Second, we assume that the instrument is strong and not perfectly

correlated with the unobserved factor structure. That is, after projecting out the unobserved

confounder Uit enough variation remains in the instrument. This requirement avoids weak

instrument problems and in the simulation discussion we highlight the importance of this

assumption for the finite sample performance of the synthetic IV estimator. Finally, we

assume that the unobserved error terms η and ϵ are i.i.d, but potentially correlated. This

assumption can be weakened to allow for time series correlation, however in our main results

the time series dependence is present through the unobserved factor structure µ′
iFt.

Observe that under our design and Assumption 3 the term in decomposition (7) and (6)

depending on the idiosyncratic shocks will converge to zero in probability. In the appendix,

we derive a finite sample bound for this term (see Lemma A.1). On the other hand, the unob-

served factor term
∑

i,t>T0
Zitµ

′
iFt need not converge to zero in probability at a 1/(JT1) rate.

Therefore, in general the TSLS estimator, with or without fixed effects, will be asymptotically
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biased. The synthetic IV estimator will also be biased in finite samples as
∑

i,t>T0
Z̃itµ̃

′
iFt

need not be zero, but the bias will depend on how well the synthetic control procedure in step

1 can partial out the factor loadings µ̃i.
6 To give conditions for consistency, we condition

on the unobserved factor structures and consider ϵ, η and the instrument Z as the source

of randomness in our design. The following result gives a bound on the
∑

i,t>T0
Z̃itµ̃

′
iFt in

terms of model primitives and the mean-absolute deviation of pre-treatment values of Y and

R, defined as MAD(Ỹ T0) = 1
JT0

∑
i,t≤T0

|Ỹjt|.

Theorem 1 (Factor term bound). Under Assumptions 1-3, for t > T0 conditional on the

unobserved components µ′
iFt and Ait, the following bound holds for all J, T1 and T0

1

JT1

E

[∣∣∣∣∣ ∑
i,t>T0

Z̃itµ̃
′
iFt

∣∣∣∣∣
]
≤
(
F̄ 2kczc

ξ

)(
2c

√
J

T0

σϵ

+ E

[
1

JT0

∑
i,t≤T0

|Ỹjt|

]
+ θE

[
1

JT0

∑
i,t≤T0

|R̃jt|

])

where c = 1 + C and all other terms are defined in Assumptions 1-3.

Theorem 1 states that the bias term that depends on the unobserved factor structure can

be bounded above by the expected mean absolute deviation of the outcome variable in the

pre-treatment period and a term that depends on the likelihood of pre-treatment “over-

fitting”. This is a standard bound in papers evaluating the properties of synthetic control

estimators (see Abadie et al. (2010) for the first example in the literature and Vives-i-Bastida

(2022) for a example with covariates). It highlights the dependence of the estimator on good

pre-treatment fit (see Ferman and Pinto (2021) for a discussion of synthetic controls with

imperfect pre-treatment fit). In particular, the bound depends on the error noise level σϵ and

the ratio
√
J/T0. In settings, in which the we have a small amount of pre-treatment periods,

a large number of units, or in which the noise level is high, perfect interpolation of the noise

is more likely, biasing the estimator. A discussion in Abadie and Vives-i-Bastida (2022)

highlights the importance of pre-treatment fit and over-fitting for performance of synthetic

control estimators through a simulation study. Similarly, we evaluate the performance of the

synthetic IV estimator in simulations in section 6 and find that the estimator performs well

even in settings with moderate σϵ

√
J/T0.

6Under weak conditions on the time series (β-mixing, or covariance stationarity), it may also be pos-
sible to directly correct this bias using a cross-fitting procedure in the spirit of the method proposed in
Chernozhukov et al. (2022) for the synthetic control framework.
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To provide conditions under which the estimator is consistent as JT1 grows to infinity,

we consider a relaxation of rank proposed by Rudelson and Vershynin (2007) that allows for

small perturbations.

Assumption 4 (Numerical rank assumption).

With probability one, for all J and T0, the pre-treatment matrices have bounded numerical

rank,
∥Y T0∥2F
∥Y T0∥22

≤ r̄1
∥RT0∥2F
∥RT0∥22

≤ r̄2, and their largest singular values are bounded above such that

σ1(Y
T0) ≤ σ̄1 and σ1(R

T0) ≤ σ̄2, where r̄1, r̄2, σ̄1 and σ̄2 may depend on J and T0.

The intuition behind Assumption 4 is better seen by considering the rank of the J × T0

design matrix Y T0 . If the matrix had fixed rank r < min{T0, J} all points would lie in a low

dimensional manifold of the space and the pre-treatment fit error would grow proportional

to r. Given that in our setting the error terms are i.i.d shocks, this is not a reasonable

assumption. Instead, we consider a bound on the numerical rank; the ratio between the

Frobenius and 2-norm of a matrix. This notion of rank allows for points to lie “close” to a

low dimensional manifold. Furthermore, for any matrix A it follows that

∥A∥2F
∥A∥22

≤ rank(A),

therefore the bounded numerical rank assumption is implied by a bounded rank assumption.

Whether Assumption 4 is satisfied will depend on the model primitives. In particular, it

will be satisfied when the signal to noise ratio is high. That is, when the factor structure

µ′
iFt dominates the noise term ϵ. In cases in which σϵ is large relative to the factor term the

numerical rank is likely to be large and the pre-treatment fit bad. In section 6 we explore

the performance of our estimator in a variety of settings and propose checks researchers can

implement to evaluate whether their empirical setting is likely to satisfy this assumption.

Theorem 2 (Factor term consistency). Under Assumptions 1-4, for t > T0 conditional on

the unobserved components µ′
iFt and Ait, the following bound holds for all J, T1 and T0

1

JT1

E

[∣∣∣∣∣∑
it

Z̃itµ̃
′
iFt

∣∣∣∣∣
]
≤
(
F̄ 2kczc

ξ

)(
2c

√
J

T0

σϵ + (
√
r̄1σ̄1 + θ

√
r̄2σ̄2)

[
1√
JT0

+ C

√
1

T0

])

where c = 1 + C and all other terms are defined in the assumptions. Furthermore, as
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JT1 → ∞, (
√
r̄1σ̄1 + θ

√
r̄2σ̄2)

√
1
T0

→ 0, and
√

J
T0

→ 0,

1

JT1

∑
it

Z̃itµ̃
′
iFt

p→ 0.

Theorem 2 shows that the bias due to the factor term is op(1) as long as (r̄1σ̄1+ r̄2σ̄2)
1
T0

→ 0.

For fixed J , this implies that we need T0, T1 → ∞. The restrictions on the rank and σ̄1, σ̄2

are not uncommon in the matrix completion literature. Combining the consistency result

with the additional assumptions on the instrument behavior we can show that the synthetic

IV estimator is a consistent estimator of θ.

Theorem 3 (Consistency). Under Assumptions 1-4, as JT1 → ∞, (r̄1σ̄1 + θr̄2σ̄2)
1
T0

→ 0

and J
T0

→ 0,

θ̃TSLS − θ
p→ 0,

θ̃TSLS
Z − θ

p→ 0,

θ̃TSLS
Y R − θ

p→ 0.

Theorem 3 states that both the synthetic IV estimator θ̃TSLS and the synthetic IV estimators

for which we do not debias the instrument θ̃TSLS
Y R and for which we only debias the instrument

θ̃TSLS
Z , are consistent given our assumptions and the rate conditions of Theorem 2. Under

our model and assumptions, the standard TSLS estimator will not be consistent in general as
1

JT1

∑
it Zitµ

′
iFt may not converge in probability to zero. As discussed, however, the synthetic

IV estimator is biased in finite samples and the finite sample bias will depend on the signal

to noise ratio, the length of the pre and post treatment periods in relation to the number of

units J and, through the first stage, the correlation between Zit and µ′
iFt. It is important

to note that while debiasing the instrument does not affect the consistency of the estimator

it may improve the finite sample properties of the estimator. In the appendix, we show

under additional assumptions, that debiasing the instrument can lead to a stronger first

stage and lower correlation with the debiased unobserved term µ̃′
iFt, leading to better finite

sample properties. We confirm this intuition in the simulation study by comparing θ̃TSLS

and θ̃TSLS
Z . Finally, under Assumptions 1-4 it is also possible to show that the synthetic IV

estimator is asymptotically normal.

Theorem 4 (Asymptotic normality). Under Assumption 1-4, conditional on weights w and

instruments Zit, if T1

T0
(1 + J)(r̄1σ̄1 + θr̄2σ̄2) → 0 and 1√

JT1
maxi

∑
j ̸=i |wji| → 0, then as
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JT1 → ∞
√
JT1(θ̃

TSLS − θ)

vJT1

d→ (γQ)−1 ×N(0, 1).

where v2JT1
= 1

JT1

∑
it var(Z̃itϵ̃it | Z,w) = 1

JT1

∑
i,t>T0

σ2
ϵ α̃

2
it and α̃it = Z̃it−

∑
j ̸=i Z̃jtwji.Furthermore,

given wi ∈ W, a sufficient condition for 1√
JT1

maxi
∑

j ̸=i |wji| → 0 is that J
T1

→ 0 as

JT1 → ∞.

Theorem 4 shows that the estimator converges to a normal random variable centered at

the true parameter when normalized by the conditional variance vJT1 which depends on the

instruments Z and synthetic control weights w. The result allows us to construct standard

asymptotic confidence intervals by using the sample counterparts. Let σ̃2
TSLS denote the

variance of the synthetic TSLS estimator which is given by

σ̃2
TSLS =

JT1v̂
2
JT1

(
∑

i,t>T0
Z̃it>T0R̃it)2

=
σ̂2
ϵ∥α̃∥22

(
∑

i,t>T0
Z̃itR̃it)2

,

where σ̃2
ϵ can be estimated from the regression residuals, and the denominator and ∥α̃∥22 =∑

it α̃
2
it can be computed directly from the data. After computing this quantity, standard

(1− α)% confidence intervals can be constructed such that

θ ∈
[
θ̃TSLS − z1−α/2 ×

σ̃TSLS√
JT1

, θ̃TSLS + z1−α/2 ×
σ̃TSLS√
JT1

]
, (10)

where z1−α/2 denotes the (1− α/2)-quantile of the standard normal distribution.

The result in Theorem 4 requires an additional density condition with respect to the

conditions for consistency in Theorem 2. The condition requires that for the sequence of

synthetic control weights w, 1√
JT1

maxi
∑

j ̸=i |wji| → 0. Intuitively, it ensures that the weights

are not concentrated on a few units such that, as JT1 grows, the estimator does not depend

on a few data points. While, in general, whether this condition is satisfied will depend on

the model primitives, under the l1-norm constraint in program (3), a sufficient condition is

that J/T1 → 0 as JT1 → ∞. In finite samples, however, we can inspect directly whether our

estimated weights ŵ are dense or not. In the simulation exercise and empirical applications

we show that in general the weights are dense, explaining the good behavior of the SIV

estimator in shorter panels.
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Variance comparison. A natural question is how does the variance of the SIV estimator

compare with the variance of the standard TSLS. Which variance is larger will depend on

the model primitives and the relationship between the unobserved confounder U and the

instrument Z. The intuition is similar to that of the effect of adding additional covariates

on the variance of the OLS estimator for a parameter of interest in a linear model. Adding

additional covariates reduces the variance of the unobserved component, but this may come

at the cost of variance inflation due to the correlation between the regressor of interest and

the additional covariates.

In our setting, if the SIV estimator is successful in partialling out the unmeasured con-

founder U , and the variance of U is large relative to σ2
ϵ or the correlation between U and Z

is sufficiently small, then the SIV estimator will exhibit a smaller variance than the standard

TSLS. To see this, suppose that in addition to Assumptions 1-4, Uit = µ′
iFt are i.i.d random

variables and var(µ′
iFt) = σ2

u > 0. Then, it follows that the asymptotic variances of the

TSLS and SIV estimators are given by σ2
TSLS = (γ2QZ)

−1[σ2
u + σ2

ϵ ] and σ2
SIV = (γ2Q)−1σ2

ϵ .

Therefore, the ratio of the variances is greater than one when

σ2
TSLS

σ2
SIV

=
σ2
u + σ2

ϵ

σ2
ϵ

Q

QZ

> 1 ⇐⇒ σ2
u + σ2

ϵ

σ2
ϵ

>
QZ

Q
. (11)

The LHS in the last expression in (11) is the signal to noise ratio, which given that σ2
u, σ

2
ϵ > 0,

is strictly greater than one. The RHS depends on the correlation between Z and U . Recall

that Q is the residual variation in Z after U has been projected out, therefore QZ/Q ≥ 1,

with QZ/Q = 1 when corr(Z,U) = 0 and QZ/Q → ∞ when corr(Z,U) → 1 and Q → 0. It

follows that when corr(Z,U) = 0, the SIV estimator will have strictly lower variance than

the TSLS, and when corr(Z,U) → 1 the SIV will have greater variance than the TSLS.

Intuitively, when corr(Z,U) = 0 this is exactly the case in which controlling for additional

covariates would lower the variance of the OLS estimator of θ when R is randomly assigned

(e.g. in an RCT). As the correlation between Z and U increases which variance dominates

will depend on the signal to noise ratio. We investigate this trade off in the simulation

exercise and the empirical applications and find that often the SIV exhibits lower variance

than the TSLS.
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5. Extensions

5.1. Combining SIV with additional estimators

The set up described under Assumptions 1 and 2 highlights a trade off between using the

instrument variation to address the endogeneity bias due to the correlation between ϵ and

η and incurring an omitted variable bias due to the instrument’s correlation with the un-

observed term µ′
iFt. The synthetic IV estimator can address these biases asymptotically in

regimes in which σϵ is small relative to the variation in µ′
iFt as we highlighted in section

4. However, when σϵ is large the endogeneity concern becomes more important than the

omitted variable bias and, therefore, we might be able to design an estimator that addresses

this bias more directly. With this in mind, we consider an additional estimator that will

perform better in cases in which the noise level is high, and propose an ensemble estimator

as a ‘doubly robust’ alternative to the synthetic IV.

Suppose that the instrument also follows a factor structure, such that Zit = Z ′
iGt for factor

loadings Zi and common factors Gt. This is the case in shift share designs such as the Syrian

refugee example or the China shock study. In such cases, a natural estimator robust to noise

ϵit is one that computes the synthetic control weights after projecting the outcome variable

in the instrument space. The intuition for this estimator is that the outcome Yit is noisy

due to the unobserved error ϵ, but given our partial instrument validity assumption 2, after

projecting the outcome in the instrument space we partial out the noise.

The projected synthetic estimator can be computed similarly to the SIV estimator, with an

additional step.

1. Project to instrument space: for t ≤ T0, let Yzt = Z(Z ′Z)−1Z ′Yt, where Z = (Z1, . . . , ZJ)
′

and Yt = (Y1t, . . . , YJt)
′ are J × 1 vectors.

2. Use the de-noised outcomes to compute the SC weights in the pre-period

ŵP
j ∈ argminw∈W∥Y T0

j − Y T0
z,−j

′w∥2.

3. Define the de-biased quantities Ỹ P
it , Z̃

P
it , R̃

P
it accordingly for the projected weights ŵP

j .

4. For the post treatment period t > T0, estimate the synthetic TSLS projected estimator

θ̃P =

(∑
it

Z̃P
it R̃

P
it

)−1∑
it

Z̃P
it Ỹ

P
it .
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The performance of the projected estimator vis-a-vis the SIV will depend on the data gen-

erating process primitives. In cases in which the noise error term ϵit is more important than

the factor term µ′
iFt the projected estimator will perform favorably. On the other hand,

if the factor structure (the signal) dominates, the projected estimator will perform worse

than the synthetic IV as it will fit the factor structure µ′
iFt worse. To see this, consider the

bound in Theorem 1 for the projected estimator. In the appendix we show that with high

probability under Assumptions 1-4

1

JT1

E

[∣∣∣∣∣ ∑
i,t>T0

Z̃P
it µ̃

P
i
′Ft

∣∣∣∣∣
]
≤
(
F̄ 2kczc

ξ

)(
2c

√
1

T0

σϵ

+ E

[
1

JT0

∑
i,t≤T0

|Ỹ P
jt |

]
+ θE

[
1

JT0

∑
i,t≤T0

|R̃P
jt|

])
,

where all the terms are defined in Assumption 3 and c = 1+C. This bound differs from the

bound in Theorem 1 in two important ways. First, the contribution of the noise term ϵ2it to

the overfitting bias changes from scaling with
√

J
T0

to scaling with 1√
T0
. This is because the

estimated weights ŵP
j dependence on the idiosyncratic shock ϵit vanishes asymptotically given

that we are projecting into the instrument space and Zi ⊥ ϵit. Second, the pre-treatment

fit will be worse as the weights only use variation in the instrument space. Therefore, while

the projected estimator will be consistent under the assumptions and asymptotic regime

of Theorem 2, its finite sample properties will differ from those of the SIV estimator. In

particular, we expect the projected estimator to perform better than the SIV when

0 ≤ ∆P
T0

−∆SIV
T0

≤
√
J

(
2(1 + C)σϵ√

T0

)
, (12)

where for an estimator a ∈ {SIV,P} the expected pre-treatment fit is given by ∆a
T0

=

E
[

1
JT0

∑
i,t≤T0

|Ỹ a
jt|
]
+ θE

[
1

JT0

∑
i,t≤T0

|R̃a
jt|
]
. Which means that in settings in which the

noise level is large (high σϵ) or the relative of number of units to pre-treatment periods is

not close to zero, the projected estimator may have smaller finite sample bias than the SIV.

While the bias itself cannot be evaluated directly in practice, by comparing differences in

pre-treatment fit (LHS in 12) and checking the noise level of a given empirical setting (to

evaluate the RHS in 12), we can have an idea of which estimator might be more or less

biased.

Given that each estimator has a different finite sample bound, that depends on different
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model primitives, we can construct an ensemble estimator that combines both estimators

and is robust to different sources of bias. For a hyper-parameter αh ∈ [0, 1] we define the

ensemble estimator as

θ̃E(αh) = αhθ̃TSLS + (1− αh)θ̃P ,

The α hyper-parameter can be chosen through cross-validation in the pre-period to optimize

the mean squared error of the synthetic control estimator. The following steps detail how to

compute the ensemble estimator.

1. Split the pre-period into a training period 1, . . . , Tv and a validation period Tv +

1, . . . , T0.

2. In the training period compute the synthetic control weights for each estimator, ŵP

and ŵ, and the debiased outcomes Ỹ P
it and Ỹit.

3. In the validation period choose α∗ to minimize the mean squared error in the validation

1

J(T0 − Tv)
∥αhỸ P,Tv + (1− αh)Ỹ Tv∥22,

where Ỹ Tv denotes the debiased outcomes for the validation period.

4. Compute the ensemble estimator in the post period as α∗θ̃TSLS + (1− α∗)θ̃P .

In the appendix, we show that θ̃E(αh) is a consistent estimator of θ for any αh ∈ [0, 1],

and therefore, the cross-validated ensemble estimator is also consistent. The finite sample

improvement of the cross-validated estimator will, however, depend on the finite sample bias

differences between the estimators and the length of the validation period used to calibrate

the hyper-parameter. In the simulation exercise in section 6, we show that the projected

estimator performs well, with slightly worse performance to the SIV in low noise cases and

better performance in high noise cases. In the Appendix (section 1.8) we also propose an

alternative estimator based on a time-series aggregation scheme.

5.2. Alternative inference procedures

The asymptotic results in section 4 require that JT1 → ∞ and J/T0 → 0. However, in

many shift-share IV and synthetic control design settings the researchers may have at their

disposal a moderate number of units and time periods. This is the case of our main em-

pirical application to the Syrian civil war. With this in mind, the literature has considered
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permutation based tests (Abadie et al. (2010), Abadie and Zhao (2022), Firpo and Possebom

(2018)) and randomization inference procedures (Imbens and Rosenbaum (2005), Borusyak

and Hull (2020)) as alternatives to asymptotic based confidence intervals. In this section,

we describe how a split conformal inference procedure can be applied in the context of the

synthetic IV. In the appendix, we describe an alternative randomization inference procedure.

Split conformal inference Our discussion in section 2 high-lights the use of reduce-

form event studies as a way to assess if there is unmeasured confounding in an instrument

Zit = Zi × H̄t. In the Appendix (section 1.7) we expand our main theoretical set up to

include the event study designs. The event studies take the following form

Yit =
∑
k ̸=T0

θk(1{t = k} × Zi) + ϵit, (13)

where, because Zit = 0 for t ≤ T0, in absence of unmeasured confounding, we have that

θl = 0 for l ≤ T0. Therefore, in our linear IV design (1), testing the null H0 : θ = 0 is implied

by testing that {θl = θk for all l ≤ T0 and k > T0}. We propose a permutation based test for

this null following the split-conformal inference procedures of Abadie and Zhao (2022) and

Chernozhukov et al. (2021). The test can be implemented with any estimator of the event

study coefficients θk, but we detail the procedure for the SIV estimator.

1. Split 1, . . . , T0 into a training period 1, . . . , Tb and a blank period Tb + 1, . . . , T0.

2. Compute SC weights in the training period and define debiased quantities accordingly.

3. Run reduced form event regression as in (13) using the debiased quantities Ỹit and Z̃i

to get estimates {θ̃Tb+1, . . . , θ̃T}.

4. Generate T1 × 1 permutation vectors θπ = (θ̃π(1), . . . , θ̃π(T1)) for π ∈ Π, where Π is the

set of size T1 combinations from Tb, . . . , T .

5. Compute the permutation test statistic S(θ) = 1/(T − T0)∥θ∥1 for each π ∈ Π.

6. Compute the permutation p-value:

p̂ =
1

Π

∑
π∈|Π|

1(S(θ̃π) ≥ S(θ̃t>T0))
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Under our design Assumptions 1-3, if additionally, Zit = Zi × H̄t and {Ft}t>Tb
is a sequence

of exchangeable random variables independent of ϵit and ηit, it follows that tests based on p̂

are exact in the sense that under the null H0, for α ∈ [0, 1] we have that

α− 1

|Π|
≤ P (p̂ ≤ α) ≤ α

where P is taken over the distribution of {ϵit, Ft, ηit}. Note that given that Assumption 3

ensures that ϵit and ηit are i.i.d, it follows that for all i, {ϵit, Ft, ηit} are exchangeable in t and

the test exact validity result follows directly from Chernozhukov et al. (2021). For a result

that relaxes the exchangeability assumption we refer readers to Abadie and Zhao (2022).

The permutation based inference procedure is going to be exactly valid in settings in

which the time series structure of the unobserved confounder satisfies the exchangeability

restriction. This is in contrast to the CI based on the SIV variance estimator (10) which

are valid asymptotically under the regime of Theorem 4. In general, however, the power

of the permutation based tests may be smaller and will depend on the number of time

periods available and the noise levels. In the simulations, in section 6, we highlight the

complementarity of both inference procedures in detecting the true effects using the SIV

estimator.

6. Simulation study

In this section, we consider a simulation design calibrated to the Syrian empirical application.

In the appendix, we consider different simulation designs with varying number of units, time

periods, instrument strength, signal-to-noise ratios and number of factors. All simulation

designs follow the following data generating process

Yit = θRit + µ′
ift + ϵit,

Rit = (γZit + ηit) ∗ 1(t ≥ T0),

Zit = Z ′
igt ∗ 1(t ≥ T0),

with time series structure

ft = κfft−1 + uft,

gt = κggt−1 + ugt,
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and error structure (
uft

ugt

)
∼ N

(
0,

[
σ2
f ρgσfσg

ρgσfσg σ2
g

])
,(

Zi

µi

)
∼ N

(
0,

[
σ2
z ρzσzσµ

ρzσzσµ σ2
µ

])
,(

ϵit

ηit

)
∼ N

(
0,

[
σ2
ϵ ρσϵση

ρσϵση σ2
η

])
.

To map our simulation study to the data, we set the number of time periods to T = 16, with

the intervention at T0 = 10 and consider J = 26 regions. We target a relatively small true

parameter of −0.16, with σ2
ϵ = σ2

η = 0.035 calibrated to the residual variance in the data

(noting that for some outcomes the variance is significantly smaller) and set σ2
Z and γ such

that the F -statistic is 150. Finally, we let the signal be given by σ2
µ = 0.25, consider one

factor k = 1 (as it explains 98% of the variance in Y from PCA) and let the AR parameter

be κ = κf = κg = 0.5. Given this design, we proceed by varying ρ, ρz, ρg, which given σ2
Z

changes the correlation structure between the unobserved terms and the instrument (Q/QZ)

and σϵ, which given σµ changes the signal-to-noise ratio
(

σ2
µ+σ2

ϵ

σ2
ϵ

)
to evaluate the performance

of the estimators in different settings.

Figure 5 shows that the synthetic IV estimator is able to correct the bias present in

the OLS and TSLS (with two-way fixed effects) estimators when there is endogeneity and

omitted variable bias. Panel (a) shows the case in which all estimators are consistent (no

correlation between Rit and Uit or ϵit). In this base case, as expected, the synthetic IV

estimator performs similar to the OLS and TSLS estimators. In panel (b) we increase

the correlation between ϵit and ηit, creating an endogeneity problem that can be addressed

using the instrument. The OLS estimator is now biased, while the TSLS and synthetic IV

estimators remain unbiased.7 In panel (c) we introduce correlation between the instrument

and the unobserved factor structure, by setting ρ = ρz = ρg = 0.5, and the instrument

becomes invalid leading to biased TSLS estimates despite adding two-way fixed effects in

the specification. The synthetic IV on the other hand is approximately unbiased, and we

can reject that the estimated effect is zero at the 5% significance level. When we increase

the correlation to ρ = ρz = ρg = 0.7 in panel (d), the bias in the OLS and TSLS estimators

7In this design the bias due to the correlation between ϵit and ηit is small given that their variances are
small relative to σµ and σz. In the simulation table and in the appendix we consider designs in which this
bias is more important.
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Figure 5: Model comparison in simulations
Note: Panels (a)-(d) display kernel density plots for TWFE OLS, TWFE TSLS and the
synthetic IV. Panel (e) shows simulated event study estimates with 95% confidence bands
for ρ = ρz = ρg = 0.5. Panel (f) shows a histogram of maxi ∥wi∥1 and

∑
i ∥wi∥22 for

ρ = ρz = ρg = 0.5. Simulations are done over 10000 iterations with the parameters calibrated
to the Syrian example.
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increases, but the synthetic IV continues to exhibit close to zero bias.

To relate this simulation results to the ‘pre-trends’ discussion in Figure 5, panel (e) shows

the event study coefficients (over 10000 simulations). Before the treatment starts at T0 = 10,

the coefficients should be close to zero, as the instrument is not active. After the treatment

starts the variation in the event study coefficients should increase given that |θ| > 0.8 The

TSLS estimator shows large deviations in the pre period similar to those in the post period,

indicating the presence of ‘pre-trends’ and unmeasured confounding. On the other hand,

the synthetic IV limits the deviations in the pre period and also reduces the post period

variation, suggesting that it is partialling out part of the unmeasured confounding. Finally,

panel (f) in Figure 5 shows the density of the estimated synthetic control weights when

ρ = ρz = ρg = 0.5. The max col norm histogram shows the value of maxi ∥wi∥1 =
∑

j ̸=i |wji|
across simulations. It shows that the weights are dense, with no one unit receiving all weight

across synthetic controls, and that the weight condition in Theorem 4 is likely to be satisfied

as 1√
JT1

maxi
∑

j ̸=i |wji| ≃ 2.5/
√
26× 6 ≃ 0.2.

To gain further insight into the behavior of the different estimators, Table 1 shows the

mean, variance, bias and mean-squared error of each estimator over 10000 simulations for

different correlations and noise levels. In all cases, the SIV outperforms the OLS and TSLS

(with two-way fixed effects) in terms of bias and mean-squared error, often by an order of

magnitude. Furthermore, the SIV exhibits close to zero bias in settings with moderate noise

and correlation levels. We compare the SIV to the synthetic IV for which we only debias the

instrument θ̃Z (SIV Z in the table), the projected SIV and the ensemble estimator proposed

in section 5. As expected from the theoretical discussion, while θ̃Z performs similar to SIV

for moderate correlation settings, as the correlation grows (Q becomes smaller) the finite

sample behavior of the SIV is better and θ̃Z exhibits more bias. More so, also as expected,

the projected SIV performs worse than the SIV in low noise settings and high correlation

levels, but is robust to increasing the noise level. Intuitively, the projected SIV estimates

(and TSLS estimates) do not change much as σϵ is increased as the noise is orthogonal to

the instrument. With this in mind, the ensemble estimator that combines the SIV and the

projected SIV achieves better bias and MSE than the SIV in most settings.

In section 1.10.1 in the appendix we compare the SIV estimator with an estimator that

combines the iterative procedure of Bai (2009) and PCA to directly estimate and project

8Note that in this design across simulations we expect that the event study coefficients are centered at
zero, which is why both IV and SIV are centered at zero. However, within a simulation the coefficients
should be zero in the pre-period and non-zero in the post-period. Hence, the variation across simulations
gives speaks to the bias in the coefficients in the pre and post periods.
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out the factor structure. We find that directly estimating the factor structure leads to MSEs

comparable to that of the SIV estimator in cases with a small number of factors (with the SIV

exhibiting smaller bias). However, as the number of factors to estimate increases, the SIV

estimator performance only deteriorates slightly, while the PCA based procedure becomes

increasingly biased towards the TSLS estimator. This finding mirrors the discussion and

simulations of Imbens and Viviano (2023) in which synthetic control procedures are shown

to offer finite sample performance improvements relative to direct factor model estimation.

Table 1: Simulations calibrated to the Syrian example for different ρ = ρz = ρg = r and σϵ.

r=0.5 r=0.7 r=0.9
Mean Var Bias MSE Mean Var Bias MSE Mean Var Bias MSE

σϵ = 1/2σSyria

OLS (TWFE) -0.018 0.018 0.142 0.038 0.096 0.024 0.256 0.090 0.244 0.023 0.404 0.186
TSLS (TWFE) -0.049 0.023 0.111 0.035 0.058 0.031 0.218 0.078 0.201 0.028 0.361 0.158
SIV -0.155 0.002 0.005 0.002 -0.142 0.003 0.018 0.003 -0.087 0.008 0.073 0.013
projected SIV -0.187 0.009 -0.027 0.010 -0.173 0.008 -0.013 0.008 -0.113 0.012 0.047 0.014
SIV + projected -0.156 0.002 0.004 0.002 -0.144 0.003 0.016 0.003 -0.092 0.008 0.068 0.012
SIV Z -0.142 0.003 0.018 0.004 -0.108 0.006 0.052 0.008 0.003 0.010 0.163 0.037

σϵ = σSyria

OLS (TWFE) 0.005 0.017 0.165 0.044 0.126 0.022 0.286 0.104 0.277 0.021 0.437 0.212
TSLS (TWFE) -0.049 0.023 0.111 0.036 0.058 0.032 0.218 0.079 0.200 0.028 0.360 0.158
SIV -0.151 0.004 0.009 0.004 -0.132 0.005 0.028 0.006 -0.056 0.013 0.104 0.024
projected SIV -0.188 0.011 -0.028 0.012 -0.169 0.011 -0.009 0.011 -0.092 0.018 0.068 0.023
SIV + projected -0.154 0.004 0.006 0.004 -0.137 0.005 0.023 0.006 -0.067 0.013 0.093 0.021
SIV Z -0.135 0.005 0.025 0.005 -0.092 0.007 0.068 0.012 0.037 0.011 0.197 0.050

σϵ = 2σSyria

OLS (TWFE) 0.041 0.015 0.201 0.056 0.170 0.021 0.330 0.130 0.327 0.020 0.487 0.257
TSLS (TWFE) -0.049 0.025 0.111 0.038 0.057 0.033 0.217 0.080 0.199 0.030 0.359 0.159
SIV -0.144 0.008 0.016 0.008 -0.114 0.010 0.046 0.012 -0.013 0.020 0.147 0.042
projected SIV -0.189 0.017 -0.029 0.018 -0.163 0.018 -0.003 0.018 -0.064 0.035 0.096 0.044
SIV + projected -0.151 0.007 0.009 0.007 -0.125 0.009 0.035 0.011 -0.031 0.022 0.129 0.039
SIV Z -0.125 0.008 0.035 0.009 -0.070 0.011 0.090 0.019 0.075 0.013 0.235 0.068

σϵ = 4σSyria

OLS (TWFE) 0.090 0.014 0.250 0.077 0.231 0.019 0.391 0.171 0.395 0.019 0.555 0.327
TSLS (TWFE) -0.050 0.029 0.110 0.041 0.056 0.037 0.216 0.083 0.198 0.032 0.358 0.160
SIV -0.132 0.027 0.028 0.028 -0.090 0.019 0.070 0.023 0.037 0.030 0.197 0.069
projected SIV -0.187 0.029 -0.027 0.029 -0.152 0.034 0.008 0.034 -0.047 0.566 0.113 0.579
SIV + projected -0.144 0.022 0.016 0.022 -0.109 0.019 0.051 0.022 0.000 0.200 0.160 0.226
SIV Z -0.112 0.014 0.048 0.017 -0.045 0.017 0.115 0.030 0.110 0.017 0.270 0.090

σϵ = 8σSyria

OLS (TWFE) 0.147 0.013 0.307 0.107 0.302 0.016 0.462 0.229 0.474 0.016 0.634 0.418
TSLS (TWFE) -0.053 0.038 0.107 0.050 0.052 0.047 0.212 0.092 0.193 0.042 0.353 0.167
SIV -0.124 0.031 0.036 0.032 -0.062 0.041 0.098 0.050 0.081 0.049 0.241 0.107
projected SIV -0.181 0.060 -0.021 0.061 -0.155 0.513 0.005 0.513 0.036 2.163 0.196 2.201
SIV + projected -0.141 0.029 0.019 0.030 -0.095 0.093 0.065 0.097 0.063 0.486 0.223 0.536
SIV Z -0.100 0.025 0.060 0.028 -0.020 0.028 0.140 0.047 0.139 0.024 0.299 0.113
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Table 2 considers inference for the SIV estimator in our calibrated simulation design.

The upper panel checks the coverage under the null θ = 0 in the setting in which the

common factors are exchangeable (κ = 0). We average over 10000 simulations the coverage

of the 95% confidence intervals constructed according to 10 for the SIV estimator using the

estimated variance σ̃2
TSLS, the permutation p-value (p̂) detailed in section 5 (with Tb = 8)

and the weight density maxi ∥wi∥1 from the condition in Theorem 4. Overall, despite the

small number of time periods and units (T1 = 6, T0 = 10, J = 6), CI based on the variance

estimator σ̃2
TSLS exhibits close to nominal size in settings with moderate noise and moderate

correlation with the unobserved confounder. In cases with low noise level and low correlation,

the SIV exhibits slight over-coverage (as σ̃2
TSLS is inflated by the α̃it terms), and in cases with

high noise level and correlation, under-coverage. The under-coverage and finite sample bias

for high correlation cases is both due to the rate of convergence depending on the correlation

and a weaker first stage due to removing variation from the instrument (smaller Q). The

permutation p-value, by construction, has nominal size regardless of the correlation or noise

level, as can be seen by the average p̂ being 0.5 across simulation designs. On the other hand,

once we check the power of the test to detect the small θ = −0.16 effect in the lower panel

of Table 2, we find that the standard CI exhibit good power (60-90%) except in high noise

cases, while the permutation p-value is under-powered. This should not be surprising given

the small number of time periods and small effect. Overall, the good performance of the

standard CI for the SIV estimator, in contrast to the theoretical rates, can be attributed to

the synthetic controls balancing as the noise level increases. This can be seen by observing

that the weight condition (given by maxi ∥wi∥1) improves with σϵ and remains bounded for

all simulation designs.

The key takeaways from the simulations are that the SIV performs well in cases in which

the TSLS and OLS do not, but that the estimator may be biased when the signal-to-noise

level is weak (high noise) or the correlation with the unmeasured confounder is very large (no

first stage). Another aspect highlighted by the theory and by reviews of best practices for

synthetic control estimators (Abadie and Vives-i-Bastida, 2022), is how the relative sizes of

T0, T1 and J influence the behavior of the estimator. The consistency result requires requires

that both JT1 is large and
√
J/T0 is small. In our baseline simulation we considered a setting

with JT1 = 156 and
√

J/T0 = 2.6, but with a strong instrument and signal-to-noise ratio.

In the appendix, we consider alternative simulation designs with different number of time

periods, units, and weaker instrument and signal-to-noise ratios. Overall, for the different

designs the same conclusions are drawn and the SIV estimator consistently outperforms the
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Table 2: Size and power simulations for ρ = ρz = ρg = r and σϵ = ισSyria.

H0 : θ = 0 (κ = 0)
r=0.0 r=0.5 r=0.7

Coverage maxi ∥wi∥1 p̂ Coverage maxi ∥wi∥1 p̂ Coverage maxi ∥wi∥1 p̂
ι

0.100 0.998 2.585 0.508 0.997 2.595 0.489 0.990 2.570 0.495
0.500 0.986 2.418 0.510 0.963 2.419 0.493 0.950 2.405 0.498
1.000 0.956 2.322 0.509 0.938 2.318 0.496 0.898 2.305 0.499
2.000 0.912 2.213 0.499 0.890 2.210 0.498 0.822 2.202 0.502
4.000 0.878 2.123 0.504 0.829 2.119 0.495 0.732 2.117 0.511
8.00 0.847 2.061 0.508 0.800 2.059 0.499 0.675 2.060 0.501

H1 : θ = −0.16 (κ = 0.5)
r=0.0 r=0.5 r=0.7

Power maxi ∥wi∥1 p̂ < 0.05 Power maxi ∥wi∥1 p̂ < 0.05 Power maxi ∥wi∥1 p̂ < 0.05
ι

0.100 0.910 2.593 0.568 0.865 2.609 0.502 0.855 2.602 0.410
0.500 0.865 2.439 0.294 0.794 2.442 0.260 0.788 2.455 0.187
1.000 0.813 2.349 0.203 0.707 2.347 0.178 0.712 2.360 0.130
2.000 0.726 2.247 0.150 0.592 2.247 0.127 0.592 2.252 0.104
4.000 0.619 2.153 0.114 0.447 2.150 0.090 0.455 2.154 0.086
8.00 0.490 2.085 0.088 0.347 2.081 0.090 0.319 2.080 0.088

TSLS and OLS estimators (with two-way fixed effects).

With the simulation results in mind, we propose four robustness checks that practitioners

should implement when using synthetic IV or similar estimators:

1. Checking your first stage: the debiasing procedure leads to a weaker first stage as

variation is removed from the instrument. In cases with strong correlation between the

instrument and the confounder (small Q) if the synthetic IV estimator exhibits a weak

first stage researchers should be worried about using an IV strategy and the synthetic

estimator.

2. Checking your pre-treatment fit: if the debiased outcomes exhibits large deviations

in the pre-treatment period or an event study design reveals pre-trends, it is likely that

the synthetic estimator will be biased and the signal-to-noise level too large for the

estimator to perform well in the researcher’s sample.

3. Back testing: given that the finite sample bias depends on the expected pre-treatment

fit, back testing the intervention an evaluating the fit of the estimator, with weights

computed in a training period, on a blank period can reveal whether the good pre-

treatment fit was due to over-fitting (high noise) or due to partialling out the con-
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founder. Additionally, researchers may implement the proposed permutation p-value

to test the sharp null that the pre and post treatment event study estimates come from

the same distributions.

4. Checking the weight density: ensuring that the synthetic control weights are not

disproportionately weighting a few units by looking at the distribution of weights can

reveal whether the asymptotic normality approximation is likely to be good in the

researcher’s empirical setting.

In the following section we implement these robustness checks when re-evaluating the

effect of the Syrian refugee crisis using the synthetic IV.

7. Empirical applications

7.1. Revisiting the Syrian refugee shock

With the SIV tool at our disposal, we now re-visit our analysis of the impact of Syrian

refugees on the salaried employment of low-skill natives. As detailed in section 3 we first

solve the synthetic control problem (3) using the demeaned data between 2004–2010.9 Then,

we create synthetic regions with outcome Y SC , treatment RSC , and instrument ZSC and

debias the data by subtracting the raw data with the synthetic data, generating Ỹit, R̃it and

Z̃it.

Before estimating the treatment effect via TSLS on the debiased data following step 2 in

section 3, we implement the quality checks detailed in 6 to ensure that we are in a setting

in which we can apply the SIV estimator. First, we check the matching quality in the pre-

period, since as discussed in the theory section, goodness of fit is necessary to get consistent

estimates using SIV. We plot the debiased wage-employment data (Ỹ ) in panel (a) Figure

6a, where black dashed lines belong to the less intensely treated regions that received less

than 2% of refugees compared to their native population by 2016, and the green straight

lines belong to the more intensely treated regions. During the training period 2004–2010,

the debiased data is close to zero, which implies that we were able to match well on the

pre-treatment trends.

The second check we perform is to look at the first-stage using the debiased data, as the

partialling out procedure will make the first stage weaker. We plot the first-stage estimates

9Demeaning the individual regions is an important detail in the Turkish setting due to the large hetero-
geneity in development rates across regions. For example, Istanbul is the most developed region with the
highest employment rate in Turkey. No convex combination of other regions can match Istanbul on levels,
but matching on trends is feasible.
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Figure 6: Quality Checks

(a) Debiased Data (b) Debiased First-Stage

(c) Debiased Reduced-Form (d) Weight density

Notes: Panel (a) uses the debiased data. The green solid lines belong to the intensely treated regions, the
black dashed lines belong to the rest, and the cutoff is 2% refugee/native ratio. The first-stage using both
raw and debiased data is plotted in Panel (b). The F-stat in the main first-stage is 154 with the raw data
and 218 with the debiased data. In Panel (c), the reduced-form estimates come from the event-study design
shown in equation (9). The outcome variable is the wage-employment rate of low-skill natives. Panel (d)
shows ∥wi∥1 for each Turkish region i, where wi are the SC weights assigned to region i in the SC of the
other regions. Standard errors are clustered at the region level. The 95% confidence interval is plotted.
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in panel (b) of Figure 6b. In our case, the debiased data maintains a strong first-stage. In a

regression of R̃ on Z̃ while controlling for two-way fixed effects, the F-stat is 218. The third

check we perform is to look at the reduced-form using the debiased data. If the matching

was successful, i.e., the donor pool had regions with similar trends for all the regions in the

sample, then the event-study design on the debiased data should find estimates around zero

in the pre-period. As in the discussion of Figure 4, we estimate event-study regressions as

in (9) for Zi and Z̃i and plot the estimates Figure 6c. Adjusting for pre-rends, SIV finds

slightly stronger disemployment effects in the post-period.

To test for over-fitting bias, we perform back-testing. In particular, instead of using the

entire pre-period in the matching, we solve for the SC weights using data between 2004-2007

and follow the rest of the algorithm as specified before. We plot the estimates in Figure 6c

in blue. Despite the reduced amount of time periods that we match on, the reduced form

does not find any placebo effect in the pre-period. All the estimates between 2004–2010 are

both quantitatively close to zero and statistically not significant, meaning synthetic distance

is successfully capturing the unmeasured confounder in the pre-period. Furthermore, we

compute the permutation p-value described in section 5 and find that p̂ = 0.023, meaning

that we can reject at the 5% significance level that the post-treatment event study coefficients

are zero and jointly equivalent to the pre-treatment coefficients.

Finally, Figure 6d shows the l1 norm of the weights each region has across synthetic

controls. Given that no one region receives a large amount of the weight, and the maximum

value (2.6) is small relative to
√
JT1 ≈ 12.5, we are confident that the density condition of

Theorem 4 is satisfied.

It is worth further discussing why IV and SIV estimates differ less in the post-period

than in the pre-period in Figure 4 and Figure 6c. While it is impossible to know the exact

nature of the unmeasured confounding, some likely explanations can help understand the

nature of the pre-trend. As explained in Gulek (2023), the regions close to the Syrian border

are less-developed than the rest. Between 2004–2010, Turkey’s GDP per capita grew by

75%. The data suggests that the less developed southeast regions were “catching up” to

the rest of Turkey with higher salaried employment growth rates. This aggregate growth

period did not last as Turkey entered a recession in 2013. If economic growth in the pre-

period was the main reason behind the pre-trends, it is likely that these pre-trends would

not extrapolate into the post-period. The SIV is capturing this underlying change in the

unobserved confounder by not changing the post estimates by a considerable margin. The

presence of pre-trends does not necessarily imply a violation of the parallel trends assumption
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Figure 7: SIV and IV estimates.

Notes: This Figure plots the IV estimates (θ̂TSLS) in green circles, the SIV estimates (θ̃) in orange squares,
and the backdated SIV estimates in blue triangles for the three main outcome measures. 95% confidence
intervals are provided, in the case of SIV they are constructed using σ̃TSLS . The permutation p-values (p̂)
are 0.023, 0.013 and 0.032 respectively.

in the post-period. Although this principle is widely recognized in theoretical discourse, it

often receives insufficient attention in empirical studies. This oversight may stem from the

challenge of publishing research that identifies significant pre-trends without addressing them

through parametric techniques, like controlling for linear trends. In our case, adjusting for

linear trends would have caused us to overestimate immigrants’ effect on natives’ salaried

jobs.

The degree by which SIV and IV estimates differ in the post depends on the persistence of

the unobserved confounders. For different outcomes, IV and SIV estimates can differ more.

To show this in our context, we estimate event studies for the immigrants’ effect on the

salaried employment of low-skill men and formal salaried employment of low-skill women.

Figure A.2.3, in the appendix, plots the estimates. In the pre-period, whereas regions close

to border are observing a relative increase in men’s salaried employment as seen in panel (a),

they observe a relative decrease in women’s formal salaried employment as seen in panel (b).

In both cases, SIV eliminates the pre-trends and adjusts the estimates in the post period.

Having seen how SIV addresses the pre-trend problem in the event-study designs and

satisfies the recommended empirical checks, we continue by implementing the second step of

the algorithm: we apply TSLS to the debiased data. We estimate the effect of Syrian refugees
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on low-skill natives’ wage-employment, and show heterogeneity by sex and formality. We

plot the estimates in Figure 7. As a benchmark, we first show the IV estimates. A researcher

using IV would find no effect on natives’ or men’s salaried employment, and find negative

effects on women’s salaried employment. However, using SIV, we find that Syrian refugees

lowered natives’ salaried employment in all cases. A 1 pp increase in the refugee/native ratio

decreases low-skill natives’ salaried employment rate by 0.16 pp for men and 0.10 pp for

women. As a robustness check, we also show the results that rely on estimated weights using

the only 2004–2007 as a training period. The results remain quantitatively and qualitatively

very similar. Accordingly, the permutation p-values reject the null effect (θ = 0) for all three

outcome measures at the 5% significance level.

It is worth highlighting how much our method impacts the economic conclusions in the

empirical setting. Turkey hosts the largest number of refugees in the world. Turkey’s three

most treated exposed regions (the ones that received the most refugees) observed an increase

in labor supply of more than 10% in just five years. Refugees, especially men, have a high

propensity to work: 87% of prime-age men are “employed” in Turkey (Turkish Red Crescent

and WFP, 2019). Despite this large labor supply shock, in a short enough time period

where spatial markets are unlikely to equilibrate and despite male refugees’ having higher

employment rates than male natives, the standard IV finds no disemployment effects for

native men. Theoretically justifying this result would require either completely flat labor

demand curves (Borjas, 2003) or refugees to provide a substantial positive product demand

shock (Borjas, 2014). There is very little empirical evidence for both, especially considering

that Syrian refugees left most of their wealth behind while escaping a civil war. SIV reveals

that this significant labor supply shock has caused native disemployment in the short run

for both men and women, which is consistent with economic theory.

7.2. Revisiting the China Shock

SIV can be applied to any exposure and shift-share design. As an additional empirical

example, we estimate the effect of Chinese imports on manufacturing employment in the

United States following the identification strategy of Autor et al. (2013). The authors are

interested in the following regression (where we omit covariates for simplicity)

Yit = βXit + ϵit

Xit = γZit + ηit
(14)
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where Yit is the percentage point change in the manufacturing employment rate for region

i in decade t, Xit =
∑

k siktg
US
kt is the import exposure, where sikt is the industry-location

share at the beginning of period, and gkt is a normalized measure of the growth of imports

from China to the US in industry k. The import exposure to China is instrumented by

the increase in Chinese imports by high-income countries: Zit =
∑

k sikt−1g
high-income
kt , where

sikt−1 is the share of industry k in the previous period and ghigh-income
kt is a normalized measure

of the growth of Chinese imports to selected high-income countries. We focus on the TSLS

estimates from Tables 2 and 3 of Autor et al. (2013).10

The paper considers 4 periods of data: 1970–1980, 1980–1990, 1990–2000, 2000-2007.

We denote these periods by their starting year throughout the exercise (e.g., 1990 refers

to the period between 1990–2000). The Chinese import shock takes place in 1990–2000

and 2000–2007. The growth in Chinese imports from high-income countries in 1990–2000,

ghigh-income
k,1990 , predicts an exposure across US commuting zones via their pre-existing industry

structure. We denote this exposure as Zi,1990 and define Zi,2000 similarly, as the exposure

predicted by the growth in Chinese imports from high-income countries between 2000–2007.

Together, Zi,1990 and Zi,2000 constitute the shift-share instrument used as Zit = Zi,19901(t =

1990) + Zi,20001(t = 2000). These two exposure measures have a correlation of 0.67 across

722 commuting zones, which implies that regions that have a high exposure in 1990 were

also likely to have an high exposure in 2000. This suggests that the trade shocks in 1990

and 2000 were unlikely to be i.i.d., and hence we follow the exogeneity of shares assumption

in this shift-share design (Goldsmith-Pinkham et al., 2020) as opposed to the exogeneity of

shifts assumption in Borusyak et al. (2022).

Dissecting the shift-share instrument Zit into its two “exposure” components Zi,1990 and

Zi,2000 lends itself to an event-study design, as we already considered in section 2 (equation

(2). Figure 3 shows that the exposure shares predict decreases in manufacturing employment

in both 1990 and 2000, which is one of the core results in the China shock paper. However,

this figure also reveals that the correlation between the exposure shares and manufacturing

growth was positive in 1970, two decades before the Chinese shock, and has been decreasing

since then. For example, the coefficient estimate of Zi,1990 goes from 0.39 in 1970 to -0.28

in 1980. This pre-trend raises a concern regarding the validity of the exogeneity of shares

assumption in this shift-share design because if this trend was to continue absent the China

shock, we would have estimated the same “negative” employment effects in 1990 and 2000.

10In Table 2, the IV estimates without covariates and some placebo checks are shown. Table 3 shows the
regressions with additional covariates.
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Figure 8: Reduced-form estimates using the 1990 and 2000 shares

To apply the SIV estimator to the China shock example we follow the algorithm described

in section 3. We first solve the synthetic control problem for all of the 722 CZs, where we

match on the growth rate between 1970 and 1980, Then, we obtain the synthetic variables,

ySC , xSC , ZSC , and compute the debiased values Ỹ , X̃, Z̃. Due to the small number of pre-

periods and large number of donor units, the pre-treatment fit is almost perfect as can be

seen in Figure 8 panel (b). As discussed in Abadie and Vives-i-Bastida (2022) in these

settings it is likely that the synthetic control is fitting the noise, leading to over-fitting bias.

To address this in the appendix we re-do the analysis limiting the donor pool to the closest

100, 50, 30, and 20 donor regions according to the Euclidean distance.

We investigate the effects of the China shock on US manufacturing by comparing the IV

and the SIV estimates. We find that the SIV results are slightly smaller in magnitude, but

overall similar to the IV findings. Looking at 1990 in Figure 8 panel (b), we see that the

SIV finds a statistically significant decrease in manufacturing employment due to Chinese

imports, but the coefficient estimates are slightly smaller in magnitude than the IV estimates.

In 2000, on the other hand, we find quantitatively the same results as the original study:

adjusting for the pre-trends in 1970 and 1980 does not meaningfully change the estimates in

2000-2007.

43



Table 3: China shock effect

1990–2000 2000-2007 1990–2007
(1) (2) (3)

2SLS -0.888 -0.718 -0.746
(0.181) (0.064) (0.068)

SIV (training in 70)-0.955 -0.725 -0.764
(0.202) (0.075) (0.078)

SIV (training in 70 and 80)-0.588 -0.726 -0.703
(0.198) (0.070) (0.067)

1990–2000 2000-2007 1990–2007
(1) (2) (3)

2SLS -0.888 -0.718 -0.746
(0.181) (0.064) (0.068)

SIV -0.588 -0.726 -0.703
(0.198) (0.070) (0.067)

Notes: The first row replicates columns 1--3 
of Table 2 in ADH 2013. In rows 2 and 3, we 
apply SIV. The SC weights are estimated 
using the manufacturing growth rates in 
1970 in row 2, and in 1970 and 1980 in row 
3. 

Notes: The first row replicates columns 1--3 
of Table 2 in ADH 2013. In row 2 we apply 
SIV. The SC weights are estimated using the 
manufacturing growth rates in 1970 and 

Notes: The first row replicates columns 1–3 of Table
2 in Autor et al. (2013). The second row presents
the estimates using the SIV. The SC weights are esti-
mated using the manufacturing growth rates in 1970
and 1980.

Table 3 replicates the main findings in Autor et al. (2013). For the 1990–2000 period,

the TSLS estimates suggest that a $1,000 increase in import exposure per worker leads to

a decline in manufacturing employment of 0.89 pp. The SIV estimate for the same period

is 33% smaller, but not statistically different, at 0.59 pp. This confirms the intuition from

Figure 8 that adjusting for the pre-trend reduces slightly the China shock effect in 1990-

2000. The results for the 2000-2007 period and the two periods combined (1990-2007) imply

a decrease between 0.7 and 0.75 pp with little differences between TSLS and SIV. Autor

et al. (2013) also report IV estimates with additional covariates. We replicate their results

in the appendix in Table C.6 and find very comparable results between IV and SIV, revealing

that the unmeasured confounding might be well proxied by the set of controls.

Overall, our replication implies that despite the strong pre-trend between 1970–1990, the

IV estimates in 1990–2007 may not suffer from large biases due to unmeasured confounding.

A potential explanation for this is that the decline in manufacturing employment growth

suggested by the pre-trends flattens over time and disappears in the 2000s, leading to the

small adjustment in the 1990-2000 period and no adjustment in the 2000-2007 period as

reported by our SIV estimates.

7.3. The effect of search rankings

In this section we study an important question in platform and digital economics; what is the

effect of product rankings on producer outcomes? Many digital platforms guide consumers

to producers through search walls in which products are ranked according to ordered lists
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generated by a recommendation system. Some examples include search engines (e.g. Google,

Bing), product market places (e.g. Amazon, Wayfair, Alibaba), food delivery platforms (e.g.

Deliveroo, Uber Eats, Door Dash), travel comparison sites (e.g. Expedia, Google flights,

Kayak) or social medial platforms (e.g. Facebook, Instagram, Tiktok). Given the importance

of digital platforms, there is a growing literature in economics on the impact that rankings

have on producer and consumer choices (e.g., Athey and Ellison (2011), Ursu (2018), Choi

and Mela (2019), Hodgson and Lewis (2023), Compiani et al. (2024), Reimers and Waldfogel

(2023)).

A key empirical challenge in the literature is that of estimating the causal effect of chang-

ing the rank of a producer from observational data. Given that ranking and recommendation

systems are based on producer and consumer characteristics, observed ranks are endogenous.

For example, top search results in Google search are determined through an auction, and

therefore, advertisers with higher willingness to pay (which may be higher quality) are placed

higher. Similarly, in food delivery platforms and social media platforms recommendation en-

gines are trained on consumer and producer histories and therefore higher quality producers

may receive higher rankings. This problem is well understood in the literature and there

are a number of existing approaches to correct the endogeneity bias. For example, De los

Santos and Koulayev (2017) consider a control function approach, Narayanan and Kalyanam

(2015) and Moehring (2024) consider a regression discontinuity design, Ghose et al. (2014)

specify and estimate a simultaneous equation model, and Rutz et al. (2012) consider a latent

instrumental variables method. However, the validity of the different methods often relies on

strong assumptions, or specific empirical settings in which the recommendation assignment

function is known, which is why Ursu (2018) opts to analyze the results of a ranking A/B

test in which ranks are fully randomized. In this paper, we propose a new set of instruments

that can be used to study this question, show how the synthetic IV estimator can be applied

to deal with unmeasured confounding and validate our observational results using an A/B

test.

We provide new estimates of the effect of rank on producer sales in the empirical setting

of a food delivery platform that selectively offers preferential search contracts to some pro-

ducers. Producers with preferential search contracts see their position in the overall search

wall of the platform fixed near the top (e.g. fixed at position 2,3,5,7,11) for a specific period

of time. We use this type of fixed contracts as an instrument for rank. Given that many

platforms offer preferential deals, sponsored slots, or promotion campaigns to producers, we

believe that these kind of IVs might be available in many important digital settings. The
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fixed contract IV may be good for several reasons. First, given that the contracts directly

change the ranks, the instrument is likely very relevant. Second, given that the contracts,

in general, do not change other aspects of the producer’s offering11 the exclusion restriction

may hold. However, it is unlikely that the producers offered the contracts where chosen at

random, therefore the instrument may be invalid due to unmeasured confounding. This situ-

ation is common in IV approaches to ranking systems. Rutz et al. (2012) note that common

instruments used in these settings (e.g. lagged rankings or lagged outcomes) are unlikely to

be valid due to omitted variable biases. In our setting, however, there is some hope. While

the fixed contract IV may suffer from unmeasured confounding like the lagged IVs, we have

at our disposal a pre-treatment period for each producer; the period before the producers

were given a contract. Therefore, we are in a setting in which we may apply our proposed

synthetic IV estimator.

Our data, provided by a large global delivery platform, consists of a sample of one million

food delivery orders across six European cities between December 2022 and March 2023,

involving 240 thousand customers and 1633 stores of which 183 received a fixed position

contract (about 11%). The platform operates a marketplace for food delivery in which

restaurants/stores are ranked in a search wall that customers browse before placing an order.

The order/rank of the producers in the search wall depends on a recommendation system

(unknown to the econometrician) involving producer specific characteristics and histories as

well as order specific variables (such as geographical distance). Customers must scroll down

to discover new producers, with only a few producers being shown at any given time on the

screen (4 or 5 depending on the device used). The sample is chosen to include an A/B test

the platform performed in which ranks were randomized at the customer level. In January

and February 2023, 10936 customers where assigned to a treatment arm in which each week

the rankings on their search wall were randomly generated within their market (city). We

separate the A/B test data from the main dataset as a test set for validation. This allows

us to compare different observational methods against a randomized experiment benchmark

as in LaLonde (1986).

To study the effect of ranks on store outcomes, we aggregate the data at the store and

week level. The aggregation can be micro-founded under a consumer discrete choice model in

which consumer utility depends on common parameters that can be identified from aggregate

market shares (Berry, 1994). For an in depth structural model of the platform, producer

11In some cases commission fees are also simultaneously changed with the contract, but limited price
pass-through is observed. See Vives-i-Bastida and Sabal (2024) for a model of the platform.
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and consumer choices see Vives-i-Bastida and Sabal (2024) who use related data to study

the welfare consequences of preferential contracts in platforms. The observed data consists

of an outcome Yit, the number of orders a producer i receives in week t, treatments Rk
it, the

share of orders in which the producer was ranked in the top k = 5, 8, 10, and an instrument

Zit which consists of the share of orders in which the producer was preferenced. We do not

consider producers with Yit = 0 for some t, as we are interested in the effect of rankings for

non-fringe producers that at least receive some orders on any given week. The instrument

satisfies the requirements imposed by our design in Assumption 1, as Zit = 0 for t ≤ T i
0,

where T i
0 is the start of the contract period, but Zit may vary both in time for t > T i

0 and

across i as producers have different preference contracts that vary across time. Therefore,

this is an example of an instrument Zit that does not have a factor structure as in the shift-

share designs considered for the Syrian refugee and China shock studies. It is also important

to note that in this context it is likely that SUTVA is violated, as receiving a higher rank

implies other stores receive a lower rank, another reason to aggregate outcomes at the store-

week level is to mitigate this concern. We note however, that the estimates of all of our

estimators will suffer from this issue, making comparisons across estimators valid, and that

we see our estimated effects as lower bounds on the true causal effect.

As in the other empirical examples we can assess the validity of the fixed contract in-

strument Zit by checking the first stage strength and by inspecting the event study based

on the reduced form. The first stage regression of Rk
it on Zit (with two-way fixed effects)

shows that, as expected, the instrument is a strong predictor of the rank of a store (see

panel (a) of Figure A.4.5 in the appendix). Having a fixed contract increases the share of

orders in which the store ranks in the top 5 by about 8%, in the top 8 by about 22% and

in the top 10 by about 46%, with the first stage F-statistics being respectively, 158, 260

and 287. Therefore, we are confident that the fixed contract instrument is strong. To assess

the potential unmeasured confounding in the reduced form, we estimate the following event

study regression

log(Yit) = αi + δt +
∑
k

θk1(t− T i
0 = k) + ϵit,

where T i
0 denotes the time of the start of the fixed contract by producer i. This regression

does not use the variation across units and time of the intensity of the preferential contract,

but it highlights the potential unmeasured confounders in determining which producers are

preferenced and which are not. Given that adoption of fixed contracts is staggered, we use

the imputation estimator of Sun and Abraham (2021) to account for potential dynamic effect
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contamination. Panel (a) of Figure 9 shows the estimated reduced form effects for the fixed

contract IV in black. It can be appreciated that while becoming fixed seems to initially

increase the number of orders by about 11% one period after treatment, there are clear non-

linear (U-shaped) pre-trends, with similar patterns appearing in the post-treatment period.

Intuitively, this may be due to the platform giving fixed contracts to stores that are in

different trajectories, for example stores that are expected to increase their sales and are in

an upward trend relative to others.

To deal for the unmeasured confounding highlighted by Figure 9 we apply the synthetic

IV estimator. We modify the procedure described in section 3 to account for the staggered

adoption of the fixed contracts. We compute the synthetic control weights for each fixed

contract unit i using units that never receive a fixed contract and units that receive a fixed

contract after unit i (i.e. units j such that T i
0 ≤ T j

0 ) as the donor pool. Then, we generate

the debiased values Ỹit, R̃it and Z̃it for t > T i
0 and estimate the synthetic IV estimator for

the post-treatment periods as in the standard case. Furthermore, given the large donor

pool and number of treated units we both trim the donor pool to only match units close to

each treated unit and drop the treated units with worst pre-treatment match. Our results,

however, do not depend on this and are robust to different trimming operations. In panel

(a) of Figure 9 we plot the synthetic IV event study estimates, using the debiased data,

in red along with the standard IV estimates (in black). The synthetic IV does not exhibit

pre-trends, as expected, but more importantly it also does not exhibit the U-shaped pattern

in the post-treatment period that the standard IV does exhibit. The synthetic IV event

study shows that after a producer becomes fixed the number of orders increases by about

10% over the following weeks.

Panel (b) of Figure 9 compares the fixed contract IV estimates, the synthetic IV estimates

and the estimates from the A/B test. Given that in the A/B test, rank is randomized at the

consumer level every week, the estimates should not suffer from omitted variable bias. We

find that producer rank has a large effect on sales. The A/B test estimates (in blue) suggest

that on average always being among the top 5 producers in the search wall on a given week

leads to an increase in the number of orders of about 46% with respect to not being in the

top 5. More so, as is common in the literature, we also find evidence of the effect decaying

with the rank. Being in the top 8 leads to a smaller increase in sales of about 30%, and the

effect for being in the top 10 is about 18%. When we compare the A/B test estimates to

the fixed contract IV estimates, we see that there is likely a positive omitted variable bias

despite the inclusion of two-way fixed effects. Respectively, the IV suggests a 86%, 49% and
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Figure 9: Fixed contracts IV: reduced form and first stage
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(a) Reduced form

(b) Rank effects estimates

Notes: Panel (a) shows the reduced form event studies for the fixed contract IV (black dots) and the synthetic
IV (red triangles) using the Abraham and Sun (2020) estimator. The y-axis shows the number of orders in
logs. Panel (b) shows the estimates of the effect of Rk

it for k = 5, 8, 10 on the log number of orders for the
fixed contract IV, the synthetic IV and OLS for the A/B test sample. 95% confidence intervals are provided.
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40% increase in sales from being in the top 5, 8 and 10 ranks, more than double the A/B test

estimates. This bias is in line with our reduced form discussion, since producers with higher

growth potential may be more likely to receive a fixed contract. Reassuringly, the synthetic

IV is successful in controlling the unmeasured confounding. The synthetic IV estimates (in

green in Figure 9) are closer to the A/B test estimates, being respectively 33%, 18% and

14%. More importantly, a statistical test would not be able reject that the synthetic IV

estimates are different from the A/B test for any of the rank treatments at a reasonable

significance level. This is evidence that the proposed estimator appropriately controls the

unmeasured confounding in a setting in which the IV estimator does not.

Overall, the application of the synthetic IV estimator to the rank effects example is

relevant because (1) it shows how a new class of IVs can be used to study the question of

how rankings affect producer outcomes in digital platforms (the fixed contract/promotion

IVs) and (2) it shows that the synthetic IV estimator is effective in dealing with unmeasured

confounding in a real setting in which we have access to an experiment to validate the

observational estimates.

8. Conclusion

In this paper we provide a new method, the Synthetic IV, to deal with unmeasured con-

founding in panel data settings in which researchers have access to an instrumental variable

that is only partially valid. By assuming a factor structure on the unobserved confounding

term we derive conditions under which a synthetic IV estimator that combines Synthetic

Controls and two-stage least squares is consistent and asymptotically normal. Through a

simulation study, we show that the estimator performs well in a variety of empirical settings

and removes the bias in cases in which TSLS and OLS with two-way fixed effects do not. We

further showcase the applicability of SIV in three empirical examples: studying the effect of

immigrants on labor markets using the Syrian refugee crisis in Turkey, studying the effect of

Chinese imports on US manufacturing employment and studying the effects of rankings on

producer outcomes in digital platforms.
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A.1. Theory

Throughout the appendix we introduce the following notation to refer to the debiased quantities:

ϵ̃it ≡ ϵit −
∑

j ̸=i ŵ
SC
ij ϵjt, as well as dropping the ’SC’ weight subscript for notational convenience.

Furthermore, we use T to mean T1. The appendix consists of the following sections:

1. Bound on
∑

it Z̃itϵ̃it.

2. Proof of Theorem 1.

3. Proof of Theorem 2.

4. Proof of Theorem 3.

5. First stage debiasing lemmas.

6. Proof of Theorem 4.

7. Results for event study designs.

8. Results for projected and ensemble estimators.

9. Randomization inference.

10. Additional simulation tables.

11. Data appendix and additional tables for empirical examples.

1.1. Bound on
∑

it Z̃itϵ̃it

Lemma A.1 (Bound on Z̃itϵ̃it). Under Assumptions 1, 2, and 3, for any δ > 0,

P

∣∣∣∣∣∣
∑

i,t>T0

Z̃itϵ̃it

∣∣∣∣∣∣ ≥ δ

 ≲ 2 exp

(
− δ2

2c2zJTσ
2
ϵ

)
.

Hence, as JT → ∞, 1
JT

∑
it Z̃itϵ̃it

p→ 0.

Proof. First we show that the term has zero expectation given Assumption 3 and the independence

of the error terms ϵit. The argument follows by noting that the SC weights depend only on ϵit for

t ≤ T0,

wSC
j ∈ argminw∈W∥Y T0

j − Y T0
−j

′w∥2,

A1



as only data from the pre-treatment period is used, here denoted as the (J + 1) × T0 matrix

Y T0 . Therefore, wSC
j ⊥ ϵit for t > T0. Recall that by the law of iterated expectations if random

variables b is independent of z and a such that E[b|c] = 0 a.e., then E[ab|z] = 0. Using this fact,

under Assumption 2 it follows that E[ϵitwSC
ij |Zit] = 0 for t > T0. Similarly, for any injective function

h : Supp(w) → R it follows that h
(
wSC
j

)
⊥ ϵit for t > T0 and, consequently, E[ϵith

(
wSC
ij

)
|Zit] = 0.

To apply these facts, we re-write the second term, dropping the ’SC’ subscript for convenience

E

Z̃it

ϵit −
∑
j ̸=i

ŵSC
ij ϵjt

 = E
[
(Zit − Z ′

−itwi)(ϵit − ϵ′−itwi)
]

= E
[
ZitE[ϵit − ϵ′−itwi|Zit]− Z ′

−itE[wi(ϵit − ϵ′−itwi)|Zit]
]
,

where the −i subscripts denote J × 1 vectors not including unit i and wi denote the J × 1 vector of

weights for unit i. Given that E[ϵitwij |Zit] = 0 and E[ϵitw2
ij |Zit] = 0, it follows that both conditional

expectation terms are zero. Recall that for two vectors u and v, the following inequality holds

|u′v| ≤ ∥u∥∞∥v∥1. Therefore, Assumption 2, it follows that for w ∈ W for all i, t

|Zit − Z ′
−itwi| ≤ ∥Zt∥∞(1 + ∥wi∥1) ≤ cz(1 + C),

where Zt is the J × 1 vector of instrument values at time t. It follows by the triangle inequality

that ∣∣∣∣∣∑
it

Z̃itϵ̃it

∣∣∣∣∣ ≤ (1 + C)cz

∣∣∣∣∣∑
it

ϵ̃it

∣∣∣∣∣ .
Given that ϵit are subgaussian and for t > T0 independent of wi, it follows that ϵit −

∑
j ̸=i ŵ

SC
ij ϵjt

is a linear combination of subgaussian random variables. The first term has variance proxy σ2
ϵ

and the second term has variance proxy σϵ∥wi∥2 ≤ C2σ2 as our weights satisfy ∥wi∥2 ≤ ∥wi∥21 ≤
C2. Therefore, ϵ̃it is subgaussian with variance proxy 2σ2

ϵC
2. The result then follows directly by

Hoeffding’s inequality for subgaussian random variables (Theorem 2.6.2 Vershynin 2018)

P

(∣∣∣∣∣∑
it

Z̃itϵ̃it

∣∣∣∣∣ ≥ δ

)
≤ P

(∣∣∣∣∣∑
it

ϵ̃it

∣∣∣∣∣ ≥ δ/((1 + C)cz)

)

≲ 2 exp

(
− δ2

2C2(1 + C)2c2zJTσ
2
ϵ

)
.
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1.2. Proof of Theorem 1

Proof. We start by re-writing the factor structure in terms of the outcome variable and in the

pre-treatment period

µ̃′
iFt = Ỹit − θR̃it − ϵ̃it.

Using the projection trick, we can rewrite µ̃i in terms of pre-treatment quantities:

µ̃i = (FT0F
′
T0
)−1FT0(Ỹ

T0
i − θR̃T0

i − ϵ̃T0
i ).

With this in mind, consider the object of interest∣∣∣∣∣∑
it

Z̃itµ̃
′
iFt

∣∣∣∣∣ =
∣∣∣∣∣∑

it

Z̃itF
′
t(FT0F

′
T0
)−1FT0(Ỹ

T0
i − θR̃T0

i − ϵ̃T0
i )

∣∣∣∣∣
≤
∑
it

|Z̃itF
′
t(FT0F

′
T0
)−1FT0 ϵ̃

T0
i |+

∑
it

|Z̃itF
′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i |+ θ

∑
it

|Z̃itF
′
t(FT0F

′
T0
)−1FT0R̃

T0
i |

≤ (1 + C)cz

(∑
it

|F ′
t(FT0F

′
T0
)−1FT0 ϵ̃

T0
i |+

∑
it

|F ′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i |+ θ

∑
it

|F ′
t(FT0F

′
T0
)−1FT0R̃

T0
i |

)
.

Where the inequalities follow from the triangle inequality and the bound for |Z̃it| ≤ (1+C)cz which

we derived in Lemma A.1. For the first term bound we proceed as in Abadie and Zhao (2022) and

apply the Cauchy-Schwartz inequality and the eigenvalue bound on the Rayleigh quotient to bound

the factor terms for any t, s

(F ′
t(FT0F

′
T0
)−1Fs)

2 ≤
(
F̄ 2k

T0ξ

)2

,

To bound these terms in expectation observe that ϵ̄it ≡ F ′
t(FT0F

′
T0
)−1FT0ϵiT0 is a linear combination

of subgaussian random variables and therefore it is itself a subgaussian random variable with

variance proxy
(
F̄ 2k
T0ξ

)2
σ2
ϵ

T0
, where for notational convenience we use ϵiT0 ≡ ϵT0

i . Therefore,

|E[(ϵ̄iT0 − ϵ̄′−iT0
wi)]| ≤ E[|(ϵ̄iT0 − ϵ̄′−iT0

wi)|]

≤ (1 + C)E

∑
j

|ϵ̄iT0 |


≤ (1 + C)

E

∑
j

|ϵ̄iT0 |2
2

= (1 + C)

∑
j

E
[
|ϵ̄iT0 |2

]2
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≤ 2(1 + C)

(
F̄ 2k

ξ

)√
J

T0
σϵ.

The first inequality follows from Jensen’s inequality. The second inequality follows by the triangle

inequality, the absolute value and expectation operator inequality and ∥wi∥ ≤ C. The third follows

from Holder’s inequality with q = 2 and Jensen’s inequality. Finally, the last inequality follows from

Rigollet and Hutter 2019 (Lemma 1.4) which bounds absolute moments of sub-gaussian random

variables. It follows that

E[|F ′
t(FT0F

′
T0
)−1FT0(ϵiT0 − ϵ′−iT0

wi)|] = E[|(ϵ̄iT0 − ϵ̄′−iT0
wi)|]

≤ 2(1 + C)

(
F̄ 2k

ξ

)√
J

T0
σϵ.

For the term involving Ỹ we get that

∑
it

|F ′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i | ≤

(
F̄ 2k

ηT0

)∑
it

|
∑
t≤T0

Ỹit|

=
T

T0

(
F̄ 2k

η

) ∑
i,t≤T0

|Ỹit|

Dividing by TJ it follows that the term is bounded by(
F̄ 2k

η

)
1

JT0

∑
i,t≤T0

|Ỹit| =
(
F̄ 2k

η

)
MAD(Ỹ T0).

where MAD(Ỹ T0) = 1
JT0

∑
i,t≤T0

|Ỹit|. An equivalent bound can be derived for the term involving

R̃ which will depend on θMAD(R̃T0). The bound then follows from the proof of Theorem 1 and

by Jensen’s inequality applied to the absolute value. Consistency would follow by an application

of Markov’s inequality if the MAD terms are approximately zero.

1.3. Proof of Theorem 2

Proof. The proof follows the proof of Theorem 1 by bounding E
[

1
JT0

∑
i,t≤T0

|Ỹjt|
]
. It is useful to

re-write the SC problem in matrix form. Let W be the J × J matrix of weights from program (3)

where each row’s sum is bounded by C and diag(W ) = 0. Then the J × T0 matrix Ỹ T0 can be

re-written as Y T0 − ŴY T0 . It follows that the Frobenius norm of the matrix ∥Ỹ T0∥2F =
∑

it<T0
Ỹ 2
it

is bounded as follows

∥Ỹ T0∥2F = ∥Y T0 − ŴY T0∥2F ≤ ∥Y T0∥2F + ∥ŴY T0∥2F
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≤ ∥Y T0∥2F + ∥Ŵ∥2F ∥Y T0∥2F
≤ ∥Y T0∥2F (1 + C2J)

≤ r̄1σ̄1(1 + C2J).

where the first inequality follows by the triangle inequality. The second by the bound on the frobe-

nius norm of a matrix product. The third by noting that for wi ∈ W each row of W summed is

bounded by C and ∥wi∥2 ≤ ∥wi∥1 ≤ C2 which implies ∥Ŵ∥2F ≤ JC2. Finally, the last inequal-

ity follows from A4 as ∥Y T0∥2F ≤ ∥Y T0∥22r̄. Next, observe that
∑

it<T0
|Yit| = ∥vec(Y T0)∥21 and

∥vec(Y T0)∥22 = ∥Y T0∥2F . So by the inequality between l1 and l2 norms,∑
it≤T0

|Yit| = ∥vec(Y T0)∥1 ≤
√

JT0∥vec(Y T0)∥2 =
√

JT0∥Y T0∥F .

Given the previous derivations we get the following bound

1

JT0

∑
i,t≤T0

|Ỹjt| ≤
√
JT0

JT0

√
r̄1σ̄1(1 + C2J) ≤

√
r̄1σ̄1

(
1√
JT0

+ C

√
1

T0

)
.

A similar derivation for the term involving R̃ yields

1

JT0

∑
i,t≤T0

|R̃jt| ≤
√
JT0

JT0

√
r̄2σ̄2(1 + C2J) ≤

√
r̄2σ̄2

(
1√
JT0

+ C

√
1

T0

)
.

The first part of the result then follows by noting that for a bounded random variable |X| ≤ K,

E|X| ≤ K. The consistency part follows by an application of Markov’s inequality.

1.4. Proof of Theorem 3

Lemma A.2 (U projection consistency). Under the assumptions of Theorem 3 it follows that as

JT → ∞
1

JT
∥(I − Ŵ )U∥1

p→ 0,

where ∥·∥1 denotes the sum of the absolute values elements of the matrix, I denotes the J×J identity

matrix, Ŵ denotes the J × J matrix of weights from solving program 3 with diag(Ŵ ) = 0 and U

denotes the J × T matrix of unobserved factors µ′
iFt. Furthermore, it follows that as JT → ∞,

1

JT
∥Ŵ − PU∥F

p→ 0,
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where ∥·∥F denotes the Frobenius norm, the sum of squared elements of the matrix, and PU denotes

the projection matrix U(U ′U)−1U ′ for J × T matrix U .

Proof. From the proof of Theorem 1 we have that under the Assumptions 1-4 as JT → ∞

1

JT

∑
i,t>T0

|µ̃′
iFt|

p→ 0.

Re-writing this statement in matrix form yields the first part of the proof. Let U be the J × T

matrix with entries µ′
iFt and Ŵ be the J × J matrix with zero diagonal elements and with each

rows ŵ∗
i
′, where ŵ∗

i is the vector with entries equal to the weight vector ŵi from program (3) with

a zero in position i. Therefore, we have∑
i,t>T0

µ̃′
iFt =

∑
i,t>T0

[(I − Ŵ )U ]it = ∥(I − Ŵ )U∥1,

and given the results from Theorem 1 it follows that as JT → ∞

1

JT
∥(I − Ŵ )U∥1 =

1

JT

∑
i,t>T0

|µ̃′
iFt|

p→ 0,

which given that the LHS is non-negative and the RHS converges to zero in probability, implies

the first part of the lemma.

For the second part, we are interested in the following object

Ŵ − PU = Ŵ − PU + ŴPU − ŴPU

= (I − PU )Ŵ − (I − Ŵ )PU .

By the triangle inequality we need to show that the following two objects on the LHS converge in

probability to zero

∥Ŵ − PU∥F ≤ ∥(I − Ŵ )PU∥F + ∥(I − PU )Ŵ∥F . (A.1)

Define a linear operator gU : RT×J → RJ×J such that gU (A) := A(U ′U)−1U ′. Under Assumption

3 we have that (U ′U)−1 is invertible as the common factor matrix FTF
′
T has bounded lowest

eigenvalue and the factor loadings µi are bounded. Furthermore, given the bounds on the factor

terms we have that gU is a well defined bounded continuous linear operator. It follows by an

application of the continuous mapping theorem for bounded functions that as JT → ∞

1

JT
∥(I − Ŵ )PU∥1 =

1

JT
∥gU ((I − Ŵ )U)∥1

p→ 0,
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and convergence in the Frobenius norm follows from the l1-l2 inequality (for a vector a, ∥a∥2 ≤ ∥a∥1).
A similar argument can be applied to show that the second term in A.1 converges in probability,

by noting that PU = P ′
U and therefore that the Frobenius norm of both terms is the same.

Proof. Under the assumptions, Lemma A.1 and Theorem 3 show that both 1
JT

∑
it Z̃itϵ̃it and

1
JT

∑
it Z̃itµ̃

′
iFt are op(1). It remains to be shown that the first stage term

∑
it R̃itZ̃it does not

go to zero in probability. Observe that

1

JT

∑
it

R̃itZ̃it =
1

JT

∑
it

(γZ̃it + Ãit + η̃it)Z̃it

= γ
1

JT

∑
it

Z̃2
it +

1

JT

∑
it

Z̃itÃit +
1

JT

∑
it

Z̃itη̃it.

Under Assumptions 1-3 we have that 1
JT

∑
it Z̃itη̃it = op(1) by Lemma A.1, given that the same as-

sumptions for ϵit apply to ηit. Similarly, given Zit ⊥ Ait, that Zit is bounded, and
1
JT

∑
i,t≥T0

Ait
p→

0 as JT → ∞, it follows that 1
JT

∑
it Z̃itÃit = op(1). Next, we show that the first term does not

vanish in probability. Consider a T × J matrix Z for the instrument Zit and an equivalent matrix

Z̃ for the debiased instruments Z̃it. We can express Z̃ in terms of Z and Ŵ , the J × J matrix

with zero diagonal elements and with each row ŵ∗
i
′, where ŵ∗

i is the vector with entries equal to

the weight vector ŵi from program (3) with a zero in position i,

Z̃ = (I − Ŵ )Z = (I − Ŵ + PU − PU )Z = (I − PU )Z + (PU − Ŵ )Z.

Recall that by the triangle inequality, for a norm ∥ · ∥ and matrices A,B it follows that ∥A+B∥ ≥
|∥A∥ − ∥B∥|. Using this inequality we have that

∥Z̃∥F = ∥(I − PU )Z + (PU − Ŵ )Z∥F
≥ |∥(I − PU )Z∥F − ∥(PU − Ŵ )Z∥F |

≥ ∥(I − PU )Z∥F − ∥(PU − Ŵ )Z∥F
≥ ∥(I − PU )Z∥F − ∥(PU − Ŵ )∥∞∥Z∥1.

where the last inequality follows from the generalized Holder inequality for matrices, with the norms

respectively representing maximum row and column sums. Given that |Zit| ≤ cz for all i,t it follows

that ∥Z∥1 ≤ Jcz. By Lemma A.2 we have that as JT → ∞

1

JT
∥(PU − Ŵ )∥1

p→ 0, (A.2)

and given that PU is symmetric it follows that the same is true for the infinity norm ∥ · ∥∞, an
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note that given Lemma A.2 it is sufficient to have that T, T0 → ∞ for fixed J . Therefore, we have

that as T, T0 → ∞ 1
JT ∥(PU − Ŵ )∥2F ∥Z∥2F ≤ cz

T ∥(PU − Ŵ )∥1
p→ 0. For the term involving PU , let

MU = I − UJT1(U
′
JT1

UJT1)
−1U ′

JT1
and ZJT = vec(Z), then

Z ′
JTMUZJT = Z ′

JTM
′
UMUZJT = (MUZJT )

′(MUZJT ) = ∥MUZJT ∥22 = ∥(I − PU )Z∥2F ,

asMU is idempotent. Combining (A.2) with 1
JT Z

′
JTMUZJT

p→ Q > 0 as JT → ∞ from Assumption

4, we have that as JT → ∞

1

JT

∑
it

Z̃2
it =

1

JT
∥Z̃∥2F ≥ Q− op(1).

It follows that this term is bounded below in probability. A similar argument yields that it is also

bounded above in probability, since by the triangle inequality

1

JT
∥Z̃∥2F =

1

JT
∥(I − PU )Z + (PU − Ŵ )Z∥2F (A.3)

≤ 1

JT
|∥(I − PU )Z∥2F +

1

JT
∥(PU − Ŵ )Z∥2F . (A.4)

which converges in probability to Q as JT → ∞ by the same argument as above. It follows by the

dominated convergence theorem that 1
JT ∥Z̃∥2F

p→ Q. Therefore, we have that the first stage terms

are Op(1). Finally, consider the synthetic IV estimator decomposition

θ̃TSLS = θ +

 1

JT

∑
i,t>T0

Z̃itR̃it

−1

1

JT

∑
i,t>T0

Z̃it

µi −
∑
j ̸=i

ŵSC
ij µj

′

Ft

+

 1

JT

∑
i,t>T0

Z̃itR̃it

−1

1

JT

∑
i,t>T0

Z̃it

ϵit −
∑
j ̸=i

ŵSC
ij ϵjt


= θ +Op(1)op(1) +Op(1)op(1)

= θ + op(1)

Given that in the proof of Theorem 2 we bound away the contribution of the instrument Z̃it, the

same proof can be applied for Zit for θ̃
TSLS
Y R . Furthermore, observe that

Z̃ ′Z = Z ′(I −W )′Z = Z ′(I − PU )Z + Z ′(PU − Ŵ )′Z (A.5)

and that because PU is symmetric and idempotent, a corollary of Lemma A.2 is that 1
JT ∥Ŵ

′ −
PU∥1 → 0 in probability as JT → ∞ since ∥Ŵ ′−PU∥F = ∥(Ŵ −PU )

′∥F = ∥Ŵ −PU∥F . Therefore,

A8



it follows that as JT → ∞
1

JT
∥(PU − Ŵ )′Z∥2F

p→ 0

by the same argument as for θ̃TSLS and the same probability limit holds for the first stage term.

To show the consistency for θ̃TSLS
Z observe that the equivalent decomposition (6) for the estimator

involves bounding in probability the following term∑
it

|Z̃itµ
′
iFt| =

∑
it

|[Z ′(I − Ŵ )′U ]it| = ∥Z ′(I − Ŵ )′U∥1,

where ∥ · ∥1 denotes the sum of the absolute value of the entries norm. Given that PU is symmetric,

a corollary of Lemma A.2 is that 1
JT ∥(I − Ŵ )′U∥1 → 0 in probability as JT → ∞ since ∥Ŵ ′ −

PU∥F = ∥(Ŵ − PU )
′∥F = ∥Ŵ − PU∥F . Therefore, by bounding Zit, by Lemma A.2 we have that

1
JT

∑
it |Z̃itµ

′
iFt|

p→ 0 as JT → ∞. The same argument as for θ̃TSLS
Y R for the first stage applies by

noting that the same Z̃itZit term appears.

1.5. Debiasing instrument Z

As noted in the main text debiasing the instrument is not a necessary condition for the consistent

estimation of θ. In this section we note that while this is the case, debiasing the instrument can

lead to better finite sample performance. In Lemma A.3 we derive a probability bound for the

unobserved factor term in decomposition (6) for the cases in which the instrument Z or Z̃ is used.

The Lemma shows that both lead to the same rate, but with a different constant. If Z is used

the rate is multiplied by 1
JT Z

′Z
p→ QZ , the variation in the instrument Z. While, if Z̃ is used the

rate is multiplied by Q, as described in Assumption 3, the variation in the instrument once the

unobserved confounder U is projected out. Given that Q ≤ QZ by defition we expect debiasing

the instrument to lead to a better finite sample rate. On the other hand, one might think that

debiasing the instrument leads to a worse first stage. While this may be true, it is not guaranteed

that using Z̃ will make the first stage worse. Under additional assumptions Lemma A.4 gives

conditions under which using the instrument Z̃ leads to a weakly larger, but similar, first stage

when we condition on the weights w. The intuition for the result is that Z̃ ′Z appears in the first

stage when the instrument Z is used versus Z̃ ′Z̃ in the case in which Z̃ is used. Suppose informally

that Z̃ ≃ (I − PU )Z, where PU is defined as in Assumption 3. Then, Z̃ ′Z ≃ Z ′(I − PU )Z and

Z̃ ′Z̃ ≃ Z ′(I − PU )
′(I − PU )Z = Z ′(I − PU )Z because I − PU is idempotent. Therefore, in both

cases we do not expect the first stage to be very different.

In a simulation exercise, we plot the distribution of the empirical correlation between Ũ , R̃ and Z

and Z̃ in the context of our simulation design in section 6. As can be seen in Figure A.2 in the
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appendix simulation section, debiasing the instrument may matter a lot to reduce the finite sample

correlation between the unobserved confounder and the instrument, but does not change the first

stage significantly.

Lemma A.3 (Probability bounds on Z ′Ũ , Z̃ ′U and Z̃ ′Ũ ). Suppose in addition to Assumptions

1− 4 that 1
JT Z

′Z
p→ QZ . Then, under the assumptions of Theorem 4 it follows that as JT → ∞

1

JT

∑
it

|Zitµ̃
′
iFt| ≲P

√
QZ ×R(T, T0, J),

1

JT

∑
it

|Z̃itµ
′
iFt| ≲P

√
QZ ×R(T, T0, J),

1

JT

∑
it

|Z̃itµ̃
′
iFt| ≲P

√
Q×R(T, T0, J),

where ≲P denotes bounded in probability and

R(T, T0, J) =

(
F̄ 2kc

ξ

)(
2c

J√
T0

σϵ + (r̄1σ̄1 + θr̄2σ̄2)

[
1√
JT0

+ JC2

√
T

T0

])
,

for c = 1 + C.

Proof. We start by noting that under the Assumptions of Theorem 2 we have that for the JT × 1

vector Ũ = [µ̃′
iFt]it

1√
JT

E∥Ũ∥1 =
1√
JT

∑
i,t>T0

E|µ̃′
iFt| ≤ R(T, T0, J),

where the inequality follows from the proof of Theorem 4 as the proof uses a bounding argument

to account for Z̃. Next, define the JT × 1 vector of instruments Z = [Zit]it and observe that by

the Cauchy-Schwartz inequality and the l1-l2 norm inequality we have that

1

JT
|Z ′Ũ | ≤ 1

JT
∥Z∥2∥Ũ∥2 ≤

1√
JT

∥Z∥2
1√
JT

∥Ũ∥1 ≲P
1√
JT

∥Z∥2R(T, T0, J),

1

JT
|Z̃ ′Ũ | ≤ 1√

JT
∥Z̃∥2

1√
JT

∥Ũ∥2 ≤
1√
JT

∥Z̃∥2
1√
JT

∥Ũ∥1 ≲P
1√
JT

∥Z̃∥2R(T, T0, J),

where the last equality follows by applying Markov’s inequality given that the expectation of the

absolute value is bounded by rate R. The first result then follows by applying the continuous

mapping theorem for the square root as 1
JT ∥Z∥22

p→ QZ . The second result follows by a similar

argument to the proof of Theorem 2. As in the proof of Theorem 2, define the T × J matrix Z̄,

the J × J projection matrix U and the J × J weight matrix W . Then, we consider the following

decomposition

∥Z̃∥2 = ∥(I −W )Z̄∥F = ∥(I − PU )Z + (PU − Ŵ )Z∥2F .
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In the proof of Theorem 2 we showed that 1
JT ∥Z̃∥2F

p→ Q as JT → ∞. Therefore, by the continuous

mapping theorem applied to the square root it follows that

1√
JT

∥Z̃∥2
p→
√

Q,

which combined with the bound shows the first part of the proof. For the case of Z̃ ′U , we show

that it is equivalent to the Z ′Ũ case. We have that∑
it

|Z̃itµ
′
iFt| =

∑
it

|[Z ′(I − Ŵ )′U ]it| = ∥Z ′(I − Ŵ )′U∥1,

where ∥·∥1 denotes the sum of the absolute value of the entries norm. Given that PU is symmetric, a

corollary of Lemma A.2 is that 1
JT ∥(I−Ŵ )′U∥1 → 0 in probability as JT → ∞ since ∥Ŵ ′−PU∥F =

∥(Ŵ − PU )
′∥F = ∥Ŵ − PU∥F . Therefore, by Lemma A.2 we have that 1

JT

∑
it |Z̃itµ

′
iFt|

p→ 0 as

JT → ∞ with the same rate R(T, T0, J).

Lemma A.4 (First stage debiasing). Suppose that Zit = Sit + µ′
iFt and Ait = 0, where Sit is

an i.i.d random variable such that Sit ⊥ Uit and E[Sit] = 0 and E[S2
it] = σ2

S. Then, under the

conditions of Theorem 2, for W = ∆J , conditional on the weights w, it follows that as JT → ∞

1

JT

∑
it

R̃itZ̃it
p→ γξ̃,

1

JT

∑
it

R̃itZit
p→ γσ2

S ,

where σ2
S < ξ̃ ≤ 2σ2

S.

Proof. Under the assumptions, the first stage in the case in which the instrument is debiased and

in the case in which it is not is given by, respectively

1

JT

∑
it

R̃itZ̃it = γ
1

JT

∑
it

S̃2
it + op(1),

1

JT

∑
it

R̃itZit = γ
1

JT

∑
it

S̃itSit + op(1),

where the op(1) terms are the terms involving Z̃itη̃it and Zitη̃it which converge to zero in probability

by Lemma A.1, and the terms involving µ̃′
iFt which converge to zero in probability by Theorem 1.

Furthermore, by taking expectations with respect to Sit conditional on the weights i we have that
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E

[
1

JT

∑
it

S̃itSit

]
=

1

JT

∑
it

E[S2
it] = σ2

S ,

E

[
1

JT

∑
it

S̃2
it

]
=

1

JT

∑
it

E[S2
it](1 + ∥wi∥22) = σ2

A

1

JT

∑
it

(1 + ∥wi∥22).

Given that the weights are in W = ∆J , the simplex, it follows that 1/(J−1) ≤ ∥wi∥22 ≤ 1, so for all

J and T we have that σ2
S < σ2

S
1
JT

∑
it(1 + ∥wi∥22) ≤ 2σ2

S . The result follows under an appropriate

LLN.

1.6. Proof of Theorem 4

In this section we provide a proof of Theorem 4 and an additional discussion in which we show

that we can relax the conditioning on the weights by using a martingale representation of matching

estimators as in Abadie and Imbens (2012).

Proof. We are interested in the following quantity for a given set of weights w and instrument Z:

√
JT (θ̃TSLS − θ)

vwJT
=

(
1

JT

∑
it

Z̃itR̃it

)−1
1

vwJT
√
JT

∑
it

Z̃it

µi −
∑
j ̸=i

ŵSC
ij µj

′

Ft

+

(
1

JT

∑
it

Z̃itR̃it

)−1
1

vwJT
√
JT

∑
it

Z̃it

ϵit −
∑
j ̸=i

ŵSC
ij ϵjt

 ,

(A.6)

where the conditional variance is given by vwJT = 1√
JT

∑
it var(Z̃itϵ̃it | Z,w). First, we show that

the bias term depending on µ′
iFt in (A.6) is op(1). The argument is the same as in the consistency

theorem, but with a different rate. Note that from the proof of the consistency theorem (Theorem

3) that under Assumptions 1-4 we have that

∑
it

|F ′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i | ≤

(
F̄ 2k

ηT0

)∑
it

|
∑
t<T0

Ỹit|

=
T

T0

(
F̄ 2k

η

) ∑
i,t<T0

|Ỹit|

So, dividing by
√
JT and using the bound on the pre-treatment mean absolute deviation as in
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Theorem 2,

1√
JT

∑
it

|F ′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i | ≤

√
T

T0

√
J

(
F̄ 2k

η

) ∑
i,t<T0

|Ỹit|

≲

√
T

T0

√
J

(
F̄ 2k

η

)√
JT0r̄σ̄1(1 + J)

≲

√
T

T0
(1 + J)r̄σ̄1.

Therefore, the first term is op(1) when
√

T
T0
(1 + J)r̄σ̄1 → 0. Similar argument follows for the Rit

term.

Next, consider the sum in the second term in (A.6) and re-write it as follows∑
it

Z̃itϵ̃it =
∑
it

Z̃it(ϵit −
∑
j ̸=i

wijϵjt)

=
∑
it

ϵit(Z̃it −
∑
j ̸=i

Z̃jtwji)

=
∑
it

ϵitα̃it,

where α̃it = Z̃it −
∑

j ̸=i Z̃jtwji. Let Xit ≡ ϵitα̃it. Given Assumption 4, it follows that conditional

on Z and w, Xit is an i.i.d random variable with mean zero and variance σ2α̃2
it. Indeed, we have

that E[Xit|Z,w] = α̃itE[ϵit|Z,w] = 0, and V(Xit|Z,w) = E[ϵitα̃it|Z,w] = α̃2
itE[ϵit|Z,w] = α̃2

itσ
2.

Next, let s2JT =
∑

it var(Xit|Z,w) = σ2
ϵ ∥α̃∥22 and consider the Lindeberg CLT condition for δ > 0

conditional on Z and weights w

1

s2JT

∑
it

E[X2
it1{|Xit| > δsJT }] =

1

σ2
ϵ ∥α̃∥22

∑
it

E[ϵ2itα̃2
it1{|ϵit| > δ

sJT
|α̃it|

}]

≤ 1

σ2
ϵ ∥α̃∥22

∑
it

E[ϵ2itα̃2
it1{|ϵit| > δ

sJT
maxit|α̃it|

}]

=
1

σ2
ϵ ∥α̃∥22

∑
it

α̃2
itE[ϵ2it1{|ϵit| > δ

sJT
maxit|α̃it|

}]

=
1

σ2
ϵ

E[ϵ2it1{|ϵit| > δ
sJT

maxit|α̃it|
}].

We start by showing that maxit|α̃it|
sJT

→ 0 as JT → ∞ with high probability. Note that

maxit|α̃it| ≤ cz(1 + C)(1 + ∥wi∥1),
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where wi denotes the vector of weights assigned to unit i across the J − 1 synthetic controls for the

other units. A simple bound on ∥wi∥1 is given by ∥wi∥1 ≤ CJ , so maxit|α̃it| ≤ cz(1 +C)(1 +CJ).

For the denominator, we show that under our Assumptions as JT → ∞

1

JT
∥α̃∥22

p

̸→ 0.

We do so by re-writting the object of interest in matrix form for J × T matrices Z, Z̃ and J × J

matrix of weights W . By the triangle inequality and the generalized Holder inequality for matrices,

we have that

∥α̃∥22 = ∥Z̃ −W ′Z̃∥2F
= ∥(I −W )Z −W ′(I −W )Z∥2F
≥ ∥(I −W )Z∥2F − ∥W ′(I −W )Z∥2F
≥ ∥(I −W )Z∥2F − ∥W ′(I −W )∥2∞∥Z∥21.

By the proof of Theorem 2 we have that 1
JT ∥(I −W )Z∥2F

p→ Q > 0 as JT → ∞. For the second

term in the last inequality, note that the instruments are bounded, so we have that ∥Z∥1 ≤ Jcz.

Let PU denote the J × J projection matrix for unobserved confounder J × T matrix U . It follows

that, PU (I − PU ) = 0. Then, consider

∥W ′(I −W )∥2∞ = ∥W (I −W ′)∥21 = ∥W (I −W ′)− PU (I − PU )∥21.

By Lemma A.2 we have that 1√
JT

∥W −PU∥1
p→ 0 as JT → ∞. It follows that 1

JT ∥W (I −W ′)∥21 =
∥W (I − W ′) − PU (I − PU )∥21

p→ 0. Therefore, as J/T → 0 we have that 1
JT ∥α̃∥

2
2 ≥ Q with

high probability. It follows by an application of the continuous mapping theorem that with high

probability,

maxit|α̃it|
sJT

≤ (1/
√
JT )cz(1 + C)(1 + CJ)

1/
√
JTσϵ∥α̃∥2

≲P

√
J

T

czC
2

σϵ
√
Q
.

Therefore, as
√
J/T → 0 we have that maxit|α̃it|

sJT
→ 0. In the case in which we condition on a

weight sequence such that ∥wi∥1 ≤ cw for all i, it follows that maxit|α̃it| ≤ cz(1 + C)(1 + cw), so

the requirement that
√

J/T → 0 is no longer necessary and the rate holds as long as JT → ∞.

The Lindeberg condition holds by the Dominated Convergence Theorem given that ϵit is i.i.d and

has bounded fourth moments. Therefore, we have that as JT → ∞ and either J/T → ∞ or for all

i, ∥wi∥1 ≤ cw < ∞,
1√

JTvwJT

∑
it

Z̃itϵ̃it =
1

sJT

∑
it

Z̃itϵ̃it
d→ N(0, 1).
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Combining this result with the first stage terms in (A.6) we have that under the same rates of

convergence √
JT (θ̃TSLS − θ)

vwJT

d→ Q−1N(0, 1),

where we used Slutsky’s theorem and the fact that as JT → ∞ 1
JT

∑
it Z̃itR̃it

p→ Q. Define v∗JT

as the probability limit of the conditional variance estimate vwJT = 1√
JT

∑
it var(Z̃itϵ̃it | Z,w) as

JT → ∞. It follows by Slutsky’s theorem that

√
JT (θ̃TSLS − θ)

vJT

d→ N(0, 1),

where vJT = Q−2plim 1√
JT

∑
it var(Z̃itϵ̃it | Z,w).

Discussion of weight conditioning Note that conditioning on the weights and instrument is

equivalent to conditining on the pre-treatment period outcomes and treatments. Hence, it is possible

consider a martingale representation as Abadie and Imbens (2012) do for matching estimators in

which the information set is the pre-treatment period outcomes. Suppose for simplicity that we

are in a setting where Rit = 0 for t < T0 and W = ∆J−1. Then, define the partial sums for a given

time t as

StJk =
k∑

l=1

Z̃ltϵ̃lt,

under our assumptions it follows that

E[StJk+1 | StJ1, . . . , StJk] = E[Z̃ltϵ̃lt | StJ1, . . . , StJk] + StJk = StJk,

where the condition expectation is zero given that conditional on the weights w under our error

independence and partial instrument validity assumptions the instrument and the error term are

uncorrelated when t > T0 as shown in Lemma 1. Furthermore, define the martingale difference as

XtJk = StJk − StJk−1 = Z̃ktϵ̃kt,

and the information set is given by the generated σ-algebra FtJk = σ({Y T0
1 , . . . , Y T0

k−1, Z1t, . . . , Zk−1t})
as the weights depend only on the outcome values in the pre-treatment period. Therefore, conditing

on FtJk is equivalent to conditiong on the weight vectors.

We can now apply the martingale CLT (Theorem 3.2, p. 59 from Hall and Heyde (1980)):

Theorem A.1 (Martingale CLT). Let {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} be a zero-mean, square-integrable
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martingale array with differences Xni and let η2 be an a.s. finite random variable. Suppose (1) a

Lindeberg condition, for all ε > 0:∑
i

E
(
X2

ni1 {|Xni| > ε} |Fn,i−1

) p−→ 0,

(2):

V 2
nkn =

∑
i

E
(
X2

ni|Fn,i−1

) p−→ η2,

and (3) the σ-fields are nested Fn,i ⊂ Fn+1,i for 1 ≤ i ≤ kn, n ≥ 1. Then:

Snkn =
∑
i

Xni
d−→ Z,

where the random variable Z has characteristic function E exp
(
−1

2η
2t2
)
.

Condition (3) is easy to check given our definition of FtJk. We start with condition (1) and consider
1√
JT

XtJk. We will show point-wise convergence. Note that conditional on FtJk by applying Holders

inequality,

E
[
X2

tJk

JT
1 {|XtJk| > ε}

]
≤ 1

JT
E
[
X4

tJk

]1/2
P
({

|XtJk| >
√
JTε

})1/2
.

The second term can be further bounded by applying Chebyshev’s inequality and under Assump-

tions 1-3

P
({

|XtJk| >
√
JTε

})
≤ var(ϵ̃kt|w)c2z

JTε2

≤ σ2c2z
Tε2

,

where the conditional variance is bounded above by the sum of the J variances. The first expectation

term can be bounded by noting that the instruments are bounded and under the assumption of

bounded fourth moments of the error term

E
[
X4

tJk

]
≤ c4zE

[
ϵ̃4kt
]

≤ c4zE

[∑
i

ϵ4it

]
= c4zJE

[
ϵ4it
]
.
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Combining the two bounds we get that for XtJk/
√
JT ,

∑
kt

E
(
(XtJk/

√
JT )21

{
|XtJk/

√
JT | > ε

}
|FtJk−1

)
≤ JT

σ
√
m4c

3
z

√
J

JT
√
Tε

≲

√
J

T
,

where E
[
ϵ4it
]
≤ m4. Hence, as

√
J
T → 0 Lindeberg’s condition (1) is satisfied point-wise. Next,

note that the variance term in condition (2) is bounded in probability and not op(1) by the proof of

Theorem 4. Hence, all conditions for the martingale Lindeberg CLT are satisfied and the normality

results extends to the case in which we do not directly condition on the weights.

1.7. Results for event study designs

To derive theoretical results for the event study designs using the SIV debiased values, we impose

additional assumptions on the instrument and the reduced form equation.

Assumption 5 (Event study design). The outcome of interest follows

Yit = θtZi + µ′
iFt + ϵit,

where θt is the time varying parameter of interest satisfying θt = 0 for t ≤ T0 and the instrument

satisfies Zi ⊥ ϵit, ηit, |Zi| ≤ cz, for all i, t, and, as J → ∞,

1

J
Z ′(I − PU )Z

p→ Qe > 0,

where Z is the J × 1 vector containing Zi for all i and PU = U(U ′U)−1U ′ is the projection matrix

for the J × k matrix of factor loadings U .

Note, that while Assumption 5 abstracts away from the instrument equation of the triangular

design in Assumption 1, it can directly be reconciled with our design. Consider plugging in the

instrument equation from Assumption 1 into the outcome equation and setting Ait = 0 such that

Yit = θ(γZit + ηit) + µ′
iFt + ϵit.

Furthermore, suppose we have a factor instrument, as is the case in the event study designs, and

Zit = Zi × Ht with Ht = 0 for t ≤ T0, then we have that θt ≡ γθHt and θt = 0 for t ≤ T0.

Furthermore, the error term satisfies that ϵit + θηit ⊥ Zi as required by Assumption 5.
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Under Assumption 5 we will show that the least-squares estimator for θt based on equation

Ỹit =
∑
k ̸=T0

θk(1{t = k} × Z̃i) + ϵit, (A.7)

recovers the dynamic effect θt under the same additional assumptions as Theorem 2. The SIV least

squares event study estimator solves the following program for θ ∈ [θ1, . . . , θT0−1, θT0+1, . . . , θT ],

min
θ

∑
it

(Ỹit −
∑
k ̸=T0

θk(1{t = k} × Z̃i))
2.

Taking FOC with respect to θl for some l ̸= T0 we have that

−2
∑
it

(Ỹit −
∑
k ̸=T0

θk(1{t = k} × Z̃i))1{t = l}Z̃i = 0

∑
i

(Ỹil − θlZ̃i)Z̃i = 0,

as 1{t = k}1{t = l} = 1 if and only if k = l. Hence, the SIV event study estimator is given by

θ̃l =

(∑
i

Z̃2
i

)−1∑
i

Z̃iỸil.

Similarly to the SIV estimator for θ, we can decompose the event study estimator as follows

θ̃l = θl +

(∑
i

Z̃2
i

)−1∑
i

Z̃iµ̃
′
iFl +

(∑
i

Z̃2
i

)−1∑
i

Z̃iϵ̃il. (A.8)

In what follows, we prove a consistency result (Theorem A.2) and asymptotic normality result

(Theorem A.3) for the event study estimator under the similar conditions as the results in the

main text (Theorem 2 and Theorem 4). The main difference is that our results for the event study

estimator require the number of units J and pre-treatment periods T0 to grow to infinity, whether

the results in the main text are valid for fixed J .

Theorem A.2 (Event study estimates consistency). Under Assumption 5 and the additional as-

sumptions of Theorem 2, it follows that as J → ∞ and r̄1σ̄1

√
J
T0

→ 0

θ̃l
p→ θl

for l ∈ {1, . . . , T0 − 1, T0 + 1, . . . , T}.
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Proof. Start by considering the terms in A.8 that involve ϵ̃il. Under Assumption 3 and Zi ⊥ ϵit it

follows by Lemma A.1 for t = l that as J → ∞

1

J

∑
i

Z̃iϵil
p→ 0.

Next, we consider the term involving µ̃′
iFl. Observe that under Assumption 5 we have that for

t ≤ T0

Ỹit = µ̃′
iFt + ϵ̃it,

so we proceed as in the proof of Theorem 1 by projecting out the common factors and applying

the triangle inequality.∣∣∣∣∣∑
i

Z̃iµ̃
′
iFl

∣∣∣∣∣ =
∣∣∣∣∣∑

i

Z̃iF
′
l (FT0F

′
T0
)−1FT0(Ỹ

T0
i − ϵ̃it)

∣∣∣∣∣
≤
∑
i

|Z̃iF
′
l (FT0F

′
T0
)−1FT0 ϵ̃i|+

∑
i

|Z̃iF
′
l (FT0F

′
T0
)−1FT0 Ỹ

T0
i |

≤ (1 + C)cz

(∑
i

|F ′
l (FT0F

′
T0
)−1FT0 ϵ̃i|+

∑
i

|F ′
l (FT0F

′
T0
)−1FT0 Ỹ

T0
i |

)
.

Applying the bounds from the proof of Theorem 1 we have that

1

J

∑
i

E[|F ′
l (FT0F

′
T0
)−1FT0(ϵiT0 − ϵ′−iT0

wi)|] ≤ 2(1 + C)

(
F̄ 2k

ξ

)√
J

T0
σϵ,

and for the term involving Ỹ we get that

1

J

∑
i

E|F ′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i | ≤

(
F̄ 2k

η

)
E

 1

JT0

∑
i,t≤T0

|Ỹit|

 .

Given that the bounds depend on the same objects as in the proof of Theorem 2, under the stable

rank Assumption 4, it follows that as J → ∞ and r̄1σ̄1

√
J
T0

→ 0

1

J

∑
i

Z̃iµ̃i
′Fl

p→ 0.

Applying Lemma A.2 for the t = l case, it follows that 1
J

∑
i Z̃

2
i

p→ Qe > 0 under the same regime

as J → ∞, which completes the consistency result.

Theorem A.3 (Asymptotic normality for event study estimates). Under Assumption 8, and the

additional assumptions of Theorem 2, conditional on weights w and instruments Zi, if
√

1
T0
(1 +
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J)r̄1σ̄1 → 0 and 1√
J
maxi

∑
j ̸=i |wji| → 0, then as J → ∞

√
J(θ̃l − θl)

vJ

d→ (Qe)
−1 ×N(0, 1).

where v2J = 1
J

∑
i var(Z̃iϵ̃i | Z,w) = 1

J

∑
i σ

2
ϵ α̃

2
i and α̃i = Z̃i −

∑
j ̸=i Z̃jwji.

Proof. We start by decomposing the estimator of interest

√
J(θ̃l − θl)

vwJ
=

(
1

J

∑
i

Z̃2
i

)−1
1

vwJl
√
J

∑
i

Z̃2
i

µi −
∑
j ̸=i

ŵSC
ij µj

′

Fl

+

(
1

J

∑
i

Z̃2
i

)−1
1

vwJ
√
J

∑
i

Z̃i

ϵi −
∑
j ̸=i

ŵSC
ij ϵjl

 ,

(A.9)

where (vwJ )
2 = 1

J

∑
i var(Z̃iϵ̃i | Z,w). The consistency of the factor term follows from a similar

bounding argument as in the proof of Theorem 2. Given Assumption 3, we have that

1√
J

∑
i

|F ′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i | ≤ 1

T0

√
J

(
F̄ 2k

η

) ∑
i,t<T0

|Ỹit|

≤ 1

T0

√
J

(
F̄ 2k

η

)√
JT0r̄σ̄1(1 + J)

≲

√
1

T0
(1 + J)r̄σ̄1.

Given that under Assumption 5 as J → ∞ we have that 1
J

∑
i Z̃

2
i

p→ Qe > 0, it follows that the

first term in A.9 is op(1) when
√

1
T0
(1 + J)r̄1σ̄1 → 0 as T0, J → ∞.

We proceed by showing that the second term A.9 converges in distribution to a normal random

variable. ∑
i

Z̃iϵ̃il =
∑
i

Z̃i(ϵil −
∑
j ̸=i

wijϵjl)

=
∑
i

ϵil(Z̃i −
∑
j ̸=i

Z̃jwji)

=
∑
i

ϵilα̃i,

where α̃i = Z̃i −
∑

j ̸=i Z̃jwji. As in the proof of Theorem 4, we show that the Lindeberg CLT

condition holds as J → ∞. Let Xil ≡ ϵilα̃i. Given Assumption 5, it follows that conditional on

Z and w, Xil is an i.i.d random variable with mean zero and variance σ2α̃2
i . Indeed, we have that
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E[Xil|Z,w] = α̃iE[ϵil|Z,w] = 0, and V(Xil|Z,w) = E[ϵilα̃i|Z,w] = α̃2
iE[ϵil|Z,w] = α̃2

i σ
2. Next, let

s2J =
∑

it var(Xil|Z,w) = σ2
ϵ ∥α̃∥22 and consider the Lindeberg CLT condition for δ > 0 conditional

on Z and weights w.

1

s2J

∑
i

E[X2
il1{|Xil| > δsJ}] =

1

σ2
ϵ ∥α̃∥22

∑
i

E[ϵ2ilα̃2
i 1{|ϵil| > δ

sJ
|α̃i|

}]

=
1

σ2
ϵ

E[ϵ2il1{|ϵil| > δ
sJ

maxi |α̃i|
}].

Under our assumptions we have that 1√
J
maxi |α̃i| → 0 as J → ∞. Therefore, it suffices to show

that 1√
J
sJ converges to a constant to guarantee the Lindeberg condition, given that we assume

bounded fourth moments. A similar argument to the proof of Theorem 4 shows that with high

probability as J → ∞
1

J
∥α̃∥ ≥ Qe > 0,

so by an application of of the continuous mapping theorem we have as J → ∞,

sJ
maxi |α̃i|

→ 0.

The asymptotic normality result then follows by an application of Slutsky’s Theorem and the

Lindeberg CLT.

Event study variance estimation The conditional variance v2J can be estimated directly

from the data using the plug-in estimator for idiosyncratic shock variance σ̂2
ϵ . In our applications,

we let the variance of the error term vary with l, and we estimate the variance as follows

σ̃2
l,SIV =

σ̂2
ϵ,l∥α̃∥22∑

i Z̃
2
i

,

where σ̂2
ϵ,l = 1

J−1

∑
i ϵ̂

2
il, where ϵ̂2il is the residual for the event study regression for time period

parameter θl. Standard errors and asymptotically valid confidence intervals can be constructed

using this variance estimator under the same assumptions as Theorem A.3, if additionally E[ϵ4il] < ∞
for all l. In the event study figures, e.g. Figure 4, the 95% confidence intervals vary with time

because we use the time-varying variance estimator.

1.8. Projected and ensemble estimators

The bound for the projected estimator can be derived in the same way as for the SIV estimator

in the proof of Theorem 1. We give a sketch of the proof. The only difference for the projected
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estimator is that we now have that

µ̃P
i = (FT0F

′
T0
)−1FT0(Ỹ

P,T0
i − θR̃P,T0

i − ϵ̃Pit).

Where the ϵ̃Pit denotes the projection into the instrument space Zi. Given that Zi ⊥ ϵit and ϵit is

mean zero, it will mean that with high probability the weights do not depend on the ϵit terms in

the pre-treatment period. Hence, removing the contribution of the J other units in the rate.

Under Assumptions 1-4, the same bounds apply for E
[

1
JT0

∑
i,t≤T0

|Ỹ P
jt |
]
+ θE

[
1

JT0

∑
i,t≤T0

|R̃P
jt|
]

for the projected estimator than for the SIV up to an additional constant depending on Q (from

the projection operator Z ′(Z ′Z)−1Z). This highlights that in cases in which the instrument does

not explain a lot of the variation in U then projecting into the instrument space makes matching

U harder.

Therefore, the projected SIV is also a consistent estimator of θ under the same conditions as the

SIV. Hence, for any α ∈ (0, 1) the ensemble estimator is consistent.

Aggregation estimator As an alternative to the projected estimator when Zit does not follow

a factor structure, we consider an aggregation estimator that matches on the aggregated timeseries

in the pre-period. The Aggregation estimator is computed equivalently to the projected estimator

except that the synthetic control weigths are computed as follows

1. Let Qi =
∑

t<T0
ZiYit for each i.

2. Match the aggregated values for each i

wA
j ∈ argminw∈∆J−1∥Qi −Q′

−iw∥2

3. Compute the aggregated TSLS estimator θ̃A using the wA weights.

In the appendix additional simulation section we provide results for the aggregation estimator and

show that it performs badly in settings in which the time series component is important.

1.9. Randomization Inference

An alternative to the permutation based test described in section 5 is a test based on randomization

inference in the spirit of Imbens and Rosenbaum (2005). Instead of considering the differences in

effects across time periods we now fix outcomes Y and consider different assignment distributions

for the instrument-treatment pairs (R,Z) across units. The intuition is that under a uniform
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assignment distribution of (R,Z) we should not see an effect on the outcome Y . We can construct

a permutation t-statistic and p-value using the following procedure.

1. In the pre-period compute the SC weights and generate the debiased quantities.

2. Define the set of permutations of the J units: P(J).

3. For a given permutation π ∈ P(J), compute

θ̃π =

(∑
it

Z̃π(i)tR̃π(i)t

)−1∑
it

Z̃π(i)tỸit,

where we permute the individuals for Z and R but not Y .

4. p-value:

p̂ =
1

P(J)

∑
π∈P(J)

P (θ̃π ≥ θ̃TSLS)),

where absolute values should be used for a two-sided test.

This test will be a valid test for the null H0 : θ = 0 under the assumption of exchangeability across

units of {µi, ϵit, ηit. The reason why we do not implement this test for our main empirical example

is that we do not believe that µi, which is correlated with the distance share Zi is exchangeable

across units. It should also be noted that in general P(J) might be very large and in practice the

p-values should be computed by randomly sampling from P(J).

1.10. Additional simulations

In this section, we consider the same simulation design as in section 6 but under different parameters.

In particular, we consider a setting with a weaker instrument and a smaller signal variance. Figure

A.1.1 replicates the first five panels of Figure 5 for a simulation design with parameters β = γ = 1,

k = 1, T = 30, T0 = 20, J = 20, σϵ = 0.5, κ = 0.5, ση = σz = σg = 1.

Table A.1 replicates Table 1 for the simulation design of Figure A.1.1 and Table A.3 for the design

with T0 = 10. In all cases we find that the SIV estimator, projected SIV and ensemble estimator

outperform the OLS and TSLS estimators. Furthermore, the performance of the SIV whe the

number of pre-treatment periods is halved remains good. Table A.2 evaluates the coverage of the

95% confidence intervals for the synthetic IV using v̂JT1 of the true parameter θ = 1 for different

correlation settings and post-treatment periods. We find that in settings in which the OLS and

TSLS are unbiased the synthetic IV exhibits a slight over-coverage, in the well behaved settings with
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Figure A.1.1: Model comparison in simulations
Note: Panels (a)-(c) display kernel density plots for TWFE OLS, TWFE TSLS and the
synthetic IV. Panel (d) shows simulated event study estimates as in Figure 2 panel (d) with
95% confidence bands for ρ = ρz = ρg = 0.5. Simulations are done over 1000 iterations with
the following parameters: β = γ = 1, k = 1, T = 30, T0 = 20, J = 20, σϵ = 0.5, κ = 0.5,
ση = σz = σg = 1.
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moderate noise and correlation the coverage is good, and in high correlation settings, as expected,

we report under-coverage.
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Table A.1: Simulations for different r = ρ = ρz = ρg and σϵ.

r=0.5 r=0.7 r=0.9
Mean Var Bias MSE Mean Var Bias MSE Mean Var Bias MSE

σϵ = 0.5
OLS (TWFE) 1.31 0.02 0.31 0.11 1.50 0.02 0.50 0.27 1.73 0.01 0.73 0.55
TSLS (TWFE) 1.26 0.07 0.26 0.13 1.51 0.08 0.51 0.34 1.83 0.06 0.83 0.74
SIV 1.02 0.01 0.02 0.01 1.05 0.02 0.05 0.02 1.19 0.04 0.19 0.07
projected SIV 0.92 0.03 -0.08 0.04 0.95 0.04 -0.05 0.05 1.11 0.07 0.11 0.08
Agg. SIV 1.23 0.08 0.23 0.13 1.46 0.08 0.46 0.29 1.80 0.04 0.80 0.68
SIV + projected 1.01 0.01 0.01 0.01 1.03 0.02 0.03 0.02 1.15 0.04 0.15 0.06
SIV + Agg. 1.03 0.01 0.03 0.01 1.07 0.02 0.07 0.02 1.21 0.04 0.21 0.08
SIZ Z 1.07 0.02 0.07 0.02 1.15 0.03 0.15 0.05 1.43 0.03 0.43 0.21

σϵ = 1
OLS (TWFE) 1.38 0.02 0.38 0.16 1.60 0.02 0.60 0.38 1.86 0.02 0.86 0.76
TSLS (TWFE) 1.26 0.07 0.26 0.14 1.50 0.08 0.50 0.34 1.82 0.06 0.82 0.74
SIV 1.03 0.01 0.03 0.01 1.07 0.03 0.07 0.03 1.26 0.05 0.26 0.12
projected SIV 0.90 0.05 -0.10 0.06 0.94 0.06 -0.06 0.07 1.14 0.08 0.14 0.10
Agg. SIV 1.22 0.07 0.22 0.12 1.47 0.08 0.47 0.30 1.80 0.04 0.80 0.69
SIV + projected 1.01 0.01 0.01 0.01 1.03 0.03 0.03 0.03 1.21 0.05 0.21 0.10
SIV + Agg. 1.04 0.01 0.04 0.02 1.10 0.03 0.10 0.04 1.30 0.05 0.30 0.14
SIZ Z 1.08 0.02 0.08 0.03 1.19 0.03 0.19 0.07 1.50 0.03 0.50 0.28

σϵ = 2
OLS (TWFE) 1.48 0.02 0.48 0.26 1.74 0.03 0.74 0.58 2.05 0.02 1.05 1.12
TSLS (TWFE) 1.26 0.08 0.26 0.14 1.50 0.09 0.50 0.34 1.82 0.07 0.82 0.74
SIV 1.05 0.03 0.05 0.03 1.12 0.04 0.12 0.06 1.37 0.07 0.37 0.21
projected SIV 0.87 0.08 -0.13 0.09 0.93 0.10 -0.07 0.10 1.21 0.10 0.21 0.15
Agg. SIV 1.22 0.08 0.22 0.12 1.46 0.09 0.46 0.30 1.80 0.05 0.80 0.68
SIV + projected 1.01 0.03 0.01 0.03 1.06 0.05 0.06 0.05 1.29 0.08 0.29 0.16
SIV + Agg. 1.07 0.03 0.07 0.03 1.16 0.05 0.16 0.07 1.43 0.07 0.43 0.26
SIZ Z 1.10 0.03 0.10 0.04 1.24 0.05 0.24 0.10 1.58 0.04 0.58 0.38

σϵ = 4
OLS (TWFE) 1.63 0.04 0.63 0.43 1.95 0.04 0.95 0.94 2.31 0.04 1.31 1.75
TSLS (TWFE) 1.25 0.09 0.25 0.15 1.49 0.11 0.49 0.35 1.81 0.08 0.81 0.74
SIV 1.08 0.05 0.08 0.05 1.19 0.07 0.19 0.11 1.49 0.10 0.49 0.34
projected SIV 0.85 0.13 -0.15 0.15 0.95 0.15 -0.05 0.15 1.30 0.15 0.30 0.24
Agg. SIV 1.20 0.10 0.20 0.14 1.45 0.11 0.45 0.31 1.79 0.07 0.79 0.69
SIV + projected 1.01 0.05 0.01 0.05 1.10 0.08 0.10 0.09 1.41 0.11 0.41 0.28
SIV + Agg. 1.11 0.05 0.11 0.06 1.24 0.07 0.24 0.13 1.56 0.09 0.56 0.40
SIZ Z 1.13 0.06 0.13 0.07 1.30 0.07 0.30 0.16 1.65 0.06 0.65 0.48

σϵ = 8
OLS (TWFE) 1.83 0.06 0.83 0.75 2.24 0.08 1.24 1.61 2.68 0.09 1.68 2.91
TSLS (TWFE) 1.24 0.11 0.24 0.17 1.49 0.13 0.49 0.37 1.80 0.11 0.80 0.76
SIV 1.12 0.09 0.12 0.11 1.27 0.12 0.27 0.19 1.61 0.13 0.61 0.50
projected SIV 0.88 0.22 -0.12 0.24 1.01 0.24 0.01 0.24 1.42 0.25 0.42 0.42
Agg. SIV 1.19 0.15 0.19 0.19 1.43 0.15 0.43 0.34 1.78 0.11 0.78 0.72
SIV + projected 1.05 0.10 0.05 0.10 1.18 0.13 0.18 0.17 1.53 0.16 0.53 0.44
SIV + Agg. 1.15 0.10 0.15 0.12 1.32 0.12 0.32 0.23 1.66 0.11 0.66 0.55
SIZ Z 1.16 0.09 0.16 0.12 1.36 0.11 0.36 0.24 1.71 0.09 0.71 0.59
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Table A.2: T0 = 20, J = 20, σϵ = 0.5, σz = 1, σother = 0.5, κ = 0.5.

Coverage α = 0.05
T=30 T=40 T=50

ρ = ρg = ρz = 0.0 0.981 0.962 0.952
ρ = ρg = ρz = 0.3 0.976 0.944 0.96
ρ = ρg = ρz = 0.5 0.960 0.945 0.923
ρ = ρg = ρz = 0.7 0.904 0.808 0.792
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Table A.3: Simulations for T0 = 10

r=0.5 r=0.7 r=0.9
Mean Var Bias MSE Mean Var Bias MSE Mean Var Bias MSE

σ = 0.5
OLS (TWFE) 1.29 0.02 0.29 0.10 1.48 0.02 0.48 0.25 1.71 0.01 0.71 0.52
TSLS (TWFE) 1.23 0.05 0.23 0.11 1.46 0.07 0.46 0.29 1.78 0.06 0.78 0.68
SIV 1.01 0.01 0.01 0.01 1.07 0.02 0.07 0.02 1.25 0.04 0.25 0.10
projected SIV 0.93 0.04 -0.07 0.04 0.99 0.05 -0.01 0.05 1.24 0.36 0.24 0.41
Agg. SIV 1.23 0.06 0.23 0.12 1.47 0.07 0.47 0.30 1.79 0.05 0.79 0.68
SIV + projected 0.94 0.04 -0.06 0.04 0.99 0.05 -0.01 0.05 1.24 0.35 0.24 0.41
SIV + Agg. 1.23 0.06 0.23 0.12 1.47 0.07 0.47 0.29 1.79 0.05 0.79 0.67
SIZ Z 1.05 0.02 0.05 0.02 1.16 0.03 0.16 0.05 1.49 0.03 0.49 0.27

σ = 1
OLS (TWFE) 1.36 0.02 0.36 0.15 1.59 0.02 0.59 0.36 1.84 0.01 0.84 0.73
TSLS (TWFE) 1.22 0.06 0.22 0.11 1.46 0.07 0.46 0.29 1.78 0.06 0.78 0.67
SIV 1.02 0.02 0.02 0.02 1.11 0.03 0.11 0.04 1.35 0.05 0.35 0.17
projected SIV 0.93 0.05 -0.07 0.06 1.00 0.07 0.00 0.07 0.66 44.22 -0.34 44.29
Agg. SIV 1.24 0.06 0.24 0.12 1.47 0.07 0.47 0.29 1.80 0.05 0.80 0.69
SIV + projected 0.93 0.05 -0.07 0.06 1.00 0.07 0.00 0.07 0.67 43.34 -0.33 43.40
SIV + Agg. 1.24 0.06 0.24 0.12 1.47 0.07 0.47 0.29 1.79 0.05 0.79 0.68
SIZ Z 1.06 0.02 0.06 0.03 1.21 0.03 0.21 0.07 1.56 0.03 0.56 0.34

σ = 2
OLS (TWFE) 1.47 0.02 0.47 0.24 1.73 0.02 0.73 0.56 2.03 0.02 1.03 1.08
TSLS (TWFE) 1.22 0.06 0.22 0.11 1.46 0.08 0.46 0.29 1.78 0.06 0.78 0.67
SIV 1.04 0.03 0.04 0.03 1.17 0.05 0.17 0.07 1.47 0.06 0.47 0.28
projected SIV 0.93 0.08 -0.07 0.08 1.03 0.10 0.03 0.10 1.34 0.13 0.34 0.25
Agg. SIV 1.25 0.08 0.25 0.14 1.47 0.09 0.47 0.31 1.80 0.05 0.80 0.70
SIV + projected 0.93 0.08 -0.07 0.08 1.04 0.09 0.04 0.10 1.34 0.13 0.34 0.25
SIV + Agg. 1.24 0.07 0.24 0.13 1.47 0.09 0.47 0.31 1.80 0.05 0.80 0.69
SIZ Z 1.08 0.03 0.08 0.04 1.26 0.04 0.26 0.11 1.62 0.04 0.62 0.43

σ = 4
OLS (TWFE) 1.62 0.04 0.62 0.42 1.94 0.04 0.94 0.92 2.30 0.03 1.30 1.72
TSLS (TWFE) 1.21 0.08 0.21 0.12 1.45 0.09 0.45 0.29 1.77 0.07 0.77 0.67
SIV 1.06 0.05 0.06 0.06 1.23 0.07 0.23 0.12 1.58 0.08 0.58 0.42
projected SIV 0.94 0.13 -0.06 0.14 1.08 0.15 0.08 0.15 1.46 0.15 0.46 0.35
Agg. SIV 1.24 0.09 0.24 0.15 1.46 0.12 0.46 0.34 1.80 0.06 0.80 0.70
SIV + projected 0.95 0.13 -0.05 0.13 1.08 0.15 0.08 0.15 1.46 0.15 0.46 0.35
SIV + Agg. 1.24 0.09 0.24 0.15 1.46 0.12 0.46 0.33 1.80 0.06 0.80 0.70
SIZ Z 1.11 0.05 0.11 0.06 1.32 0.05 0.32 0.16 1.68 0.05 0.68 0.51

σ = 8
OLS (TWFE) 1.82 0.06 0.82 0.74 2.23 0.07 1.23 1.58 2.67 0.07 1.67 2.87
TSLS (TWFE) 1.20 0.11 0.20 0.15 1.44 0.12 0.44 0.31 1.77 0.09 0.77 0.68
SIV 1.08 0.09 0.08 0.10 1.29 0.11 0.29 0.19 1.66 0.11 0.66 0.55
projected SIV 0.96 0.20 -0.04 0.20 1.15 0.22 0.15 0.24 1.55 0.23 0.55 0.52
Agg. SIV 1.22 0.13 0.22 0.18 1.46 0.16 0.46 0.37 1.79 0.09 0.79 0.72
SIV + projected 0.97 0.19 -0.03 0.19 1.15 0.22 0.15 0.24 1.55 0.22 0.55 0.52
SIV + Agg. 1.22 0.13 0.22 0.17 1.46 0.16 0.46 0.37 1.79 0.09 0.79 0.72
SIZ Z 1.13 0.07 0.13 0.09 1.36 0.08 0.36 0.21 1.73 0.06 0.73 0.60

A28



1.10.1. Simulations with comparison to factor model estimation

A natural question given our linear factor model design is how does the SIV compare to methods

that estimate the factor structure directly. This question is one that applies not only to our setting,

but to any SC design in which a linear factor model is used to derive statistical properties for the

method. Imbens and Viviano (2023) highlight a similar comparison and note that: “Two main dif-

ferences from properties of least squares estimators as in Bai (2009) is that Synthetic Control does

not require a (i) low-rank assumption on the factors, but only a low-rank assumption on the endoge-

nous factors; (ii) it does not require to specify or estimate the number of (endogenous) factors.”

Intuitively, there might be advantages in using SCs, as the method provides useful regularization

through the l1-norm or simplex constraint, and is less dependent on an exact low-rank represen-

tation. Furthermore, relative to Bai (2009) which require both the number of periods and units

to be large, our consistency result requires that T0 and JT are large, meaning that our method is

valid for either fixed J or fixed T . These rate differences and regularization advantages are likely

to translate into better finite sample performance, especially in settings with moderate rank.

It is also an open question what are the statistical properties of using plug-in factor model estimates

in our setting. Panel data approaches for treatment effect estimation with factor model plug-ins,

such as the one described by Li and Sonnier (2023), rely on the existence of a donor pool of

never-treated units for the consistent estimation of the common factors Ft in the post-treatment

period (t > T0). In our setting, because all units are treated in the post-treatment period an

alternative procedure needs to be used. We propose the following procedure that exploits the pre-

treatment period to consistently estimate the factor loadings using PCA/SVD and jointly estimate

the common factor and θt parameters in an iterative procedure as proposed in Bai (2009).

1. For t ≤ T0 we estimate µi by truncated SVD: Let Y T
0

′ denote the J × T matrix of pre-

treatment outcomes for the case in which Rit = 0 for t ≤ T0 such that Yit = µ′
iFt + ϵit.

Then, we estimate the factor loadings as µ̂ = ÛkŜk for estimates of the k−truncated SVD

Y T
0

′ = USV ′.

2. For t > T0 we estimate F and θ jointly by iteratively solving for θ by ordinary least squares

and for F by PCA. We iterate until convergence the following two equations

θ̂OLS(F ) = (R′MF̂R)−1R′MF̂Y,

where MF is the residual maker matrix for the estimated common factors F̂ , and from the

estimates of the k-truncated SVD of Y = Y T
0

′ − θ̂RT0 ′, the common factors are given by

F̂ = V̂ k.
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Figure A.1.2: Simulation of finite sample correlations.
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(a) Empirical average ŨZ vs. Ũ Z̃.

-0.5 0 0.5
0

1

2

3

4

5

6

7

8

tildeRZ
tildeRtildeZ

(b) Empirical average R̃Z vs. R̃Z̃.

Notes: Panel (a) shows the distribution of 1
JT

∑
it ŨitZit and

1
JT

∑
it ŨitZ̃it across 1000 simulations. Panel

(b) shows the distribution of 1
JT

∑
it R̃itZit and 1

JT

∑
it R̃itZ̃it across 1000 simulations. The simulation

design is that of Figure A.1.1 with parameters ρ = ρz = ρg = 0.5 as in .
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3. Given the estimated µ̂′
iF̂t we compute the IV-PCA estimator θ̂IV−PCA as the standard TSLS

with covariates (i.e. with µ̂′
iF̂t projected out).

We compare the different methods under the simulation design calibrated to the Syrian example

as in Table 1. While in the main text we considered different noise levels, here we focus on designs

with different numbers of factors k and different correlations between the instrument Zit and the

factor structure µ′
iFt. Table A.4 displays the results of the simulations. We find that the IV-PCA

estimator performs well in the low-rank case k = 1, in which it has a similar MSE to the SIV, while

exhibiting a somewhat larger bias. However, as we increase the number of factors to k = 2, 3 and

5, we find that IV-PCA performs significantly worse. The SIV exhibits negligible finite sample bias

in medium correlation settings, and even in the k = 5 case, the estimator is significantly less biased

than the TSLS, this is not true for the IV-PCA. As we increase k the estimator becomes more and

more biased, reaching similar levels to the TSLS for k = 5.

These results highlight the same phenomenon shown in the simulations of Imbens and Viviano

(2023), in which the PCA based estimator has significantly larger finite sample bias than the

SC estimator when the number of endogenous factors is large (in our case all of the factors are

endogenous).

A.2. Data

Turkish Statistical Institute (Turkstat) defines employment under four categories: wage-employment

(60.7%), self-employment (20.3%), unpaid family worker (13.2%) and employer (5.6%). Wage-

employment, or salaried employment, refers to the type of jobs that are done as an exchange for

monetary or non-monetary payment. Both fixed and hourly pay are considered wage-employment

under this category. The reason why we focus on salaried employment as opposed to overall

employment for the empirical section of the paper is that, as suggested by Gulek (2023), wage

employment and non-wage employment (self-employment, employer, or unpaid family work) are

driven by different economic forces. Whereas there has to be an employer willing to hire a worker

for a particular wage for that worker to have a salaried job (i.e, we can think about a labor demand

curve), self-employment is an individual labor-supply decision. Natives who lose their salaried jobs

due to the labor supply shock may choose to search for a salaried job while remaining unemployed,

or if self-employment is a feasible alternative, may choose to remain employed. Gulek (2023) shows

that transition from salaried to non-salaried jobs is an important adjustment mechanism for Turk-

ish men but not so for Turkish women. Whereas he finds similar effects for men and women in

salaried employment, he finds opposing results for non-salaried employment. He further argues

that the canonical labor demand framework is more appropriate to think about wage employment

(as opposed to non-wage employment) in settings where self-employment is a feasible alternative.
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Table A.4: Simulations comparing SIV and IV-PCA. Design calibrated to the Syrian exam-
ple, for different correlations ρ = ρz = ρg = r and number of factors k.

r=0.5 r=0.7 r=0.9
Mean Var Bias MSE Mean Var Bias MSE Mean Var Bias MSE

k=1
OLS (TWFE) 0.007 0.018 0.167 0.046 0.125 0.025 0.285 0.106 0.274 0.023 0.434 0.211
TSLS (TWFE) -0.051 0.026 0.109 0.038 0.053 0.036 0.213 0.081 0.193 0.031 0.353 0.155
SIV -0.151 0.005 0.009 0.005 -0.134 0.007 0.026 0.008 -0.062 0.016 0.098 0.025
IV-PCA -0.140 0.003 0.020 0.003 -0.113 0.005 0.047 0.007 -0.012 0.021 0.148 0.043

k=2
OLS (TWFE) -0.028 0.011 0.132 0.028 0.084 0.014 0.244 0.073 0.230 0.012 0.390 0.164
TSLS (TWFE) -0.053 0.012 0.107 0.023 0.053 0.015 0.213 0.061 0.196 0.013 0.356 0.139
SIV -0.144 0.002 0.016 0.002 -0.116 0.003 0.044 0.005 -0.019 0.006 0.141 0.026
IV-PCA -0.081 0.008 0.079 0.014 0.016 0.012 0.176 0.043 0.168 0.010 0.328 0.118

k=3
OLS (TWFE) -0.043 0.008 0.117 0.022 0.065 0.010 0.225 0.061 0.210 0.008 0.370 0.145
TSLS (TWFE) -0.059 0.009 0.101 0.019 0.046 0.011 0.206 0.053 0.188 0.009 0.348 0.130
SIV -0.141 0.002 0.019 0.002 -0.105 0.002 0.055 0.006 0.017 0.005 0.177 0.036
IV-PCA -0.071 0.007 0.089 0.015 0.031 0.008 0.191 0.044 0.190 0.006 0.350 0.128

k=5
OLS (TWFE) -0.044 0.006 0.116 0.019 0.065 0.007 0.225 0.057 0.209 0.005 0.369 0.141
TSLS (TWFE) -0.052 0.006 0.108 0.017 0.054 0.007 0.214 0.053 0.196 0.006 0.356 0.133
SIV -0.124 0.002 0.036 0.003 -0.070 0.003 0.090 0.011 0.075 0.004 0.235 0.059
IV-PCA -0.057 0.005 0.103 0.015 0.047 0.006 0.207 0.048 0.197 0.003 0.357 0.131
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Table B.5: Educational Attainment of Syrian refugees and Natives

Educational Attainment Syrian migrants (age 18+) Natives (Age: 18-64)

No degree 0.21 0.12
Primary school 0.42 0.33
Secondary school 0.20 0.16
High school 0.10 0.20
Some college and above 0.08 0.19

Source: Author’s calculation using 2019 Household Labor Force Survey for natives, and
Turkish Red Crescent and WFP (2019) for the Syrian refugees.

In the main text, we write that Syrian refugees are less educated than the Turkish natives. We show

evidence for this on Table B.5. We use Turkish Household Labor force Surveys to determine the

educational attainment of natives, and use livelihood surveys that are conducted on Syrian refugees

to determine their educational attainment. According to these surveys, 21% of Syrian refugees in

Turkey do not have any degree, 63% have at most a primary school degree, and 83% do not have

a high school diploma, whereas these numbers are 12%, 45%, and 61%, respectively for natives.

Figure A.2.3: Additional examples of IV vs SIV

(a) Men: salaried employment (b) Women: formal salaried employment

Notes: This Figure replicates Figure 4 with an additional panel for formal women salaried employment.
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A.3. Replication of Autor et al. (2013)

Table C.6: Replication of Table 3 in Autor et al. (2013)

(1) (2) (3) (4) (5) (6)

IV -0.75 -0.61 -0.54 -0.51 -0.56 -0.60
(0.07) (0.09) (0.09) (0.08) (0.10) (0.10)

SIV -0.70 -0.59 -0.51 -0.50 -0.61 -0.63
(0.07) (0.10) (0.10) (0.09) (0.11) (0.10)

Controls
Percentage of employment in 
manufacturing t-1 No Yes Yes Yes Yes Yes

Percentage of college-educated 
population t-1 No No No Yes No Yes

Percentage of foreign-born 
population t-1 No No No Yes No Yes

Percentage of employment 
among women t-1 No No No Yes No Yes

Percentage of employment in 
routine occupations t-1 No No No No Yes Yes

Average offshorability index of 
occupations t-1 No No No No Yes Yes

Census division dummies No No Yes Yes Yes Yes

1990–2007 stacked first differences

Notes:  The first row replicates columns 1--6 of Table 3 in ADH 2013. Row 2 shows SIV estimates. 
The SC weights are estimated using the manufacturing growth rates in 1970 and 1980. Dependent 
variable: 10 × annual change in manufacturing emp/working-age pop (in % pts). N = 1,444 (722 
commuting zones × 2 time periods). All regressions include a constant and a dummy for the 
2000–2007 period. Routine occupations are defined such that they account for 1/3 of US 
employment in 1980. The offshorability index variable is standardized to mean of 0 and standard 
deviation of 10 in 1980. Robust standard errors in parentheses are clustered on state. Models are 
weighted by start of period CZ share of national population. 
PS: We add the controls in the second step of the algorithm, where we employ 2SLS on the 
debiased outcome, treatment and the instrument. We do not debias the control variables nor use 
them in estimating the weights as ADH's data do not include them in the pre-peiod. 

Notes: The first row replicates columns 1–6 of Table 3 in ADH 2013. Row 2 shows SIV estimates. The SC
weights are estimated using the manufacturing growth rates in 1970 and 1980. Dependent variable: 10 ×
annual change in manufacturing emp/working-age pop (in % pts). N = 1,444 (722 commuting zones × 2 time
periods). All regressions include a constant and a dummy for the 2000–2007 period. Routine occupations
are defined such that they account for 1/3 of US employment in 1980. The offshorability index variable is
standardized to mean of 0 and standard deviation of 10 in 1980. Robust standard errors in parentheses are
clustered on state. Models are weighted by start of period CZ share of national population.

A.4. Additional figure for rank effects
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Figure A.3.4: Reduced-form estimates using the 1990 and 2000 shares
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Table C.7: Replication of table 2 in Autor et al. (2013)

1990–2000 2000-2007 1990–2007
(1) (2) (3)

2SLS -0.888 -0.718 -0.746
(0.181) (0.064) (0.068)

SIV -0.588 -0.726 -0.703
(0.198) (0.070) (0.067)

SIV-trim20 -0.752 -0.763 -0.761
(0.178) (0.104) (0.096)

SIV-trim30 -0.784 -0.769 -0.772
(0.177) (0.102) (0.089)

SIV-trim50 -0.874 -0.807 -0.819
(0.172) (0.081) (0.078)

SIV-trim100 -0.937 -0.769 -0.801
(0.170) (0.067) (0.069)

1990–2000 2000-2007 1990–2007
(1) (2) (3)

2SLS -0.888 -0.718 -0.746
(0.181) (0.064) (0.068)

SIV (training in 70) -0.955 -0.725 -0.764
(0.202) (0.075) (0.078)

SIV-trim20 (training in 70)-1.177 -0.771 -0.840

Notes: The first row replicates columns 1--3 of Table 2 
in ADH 2013. In rows 2--6, we apply SIV. The SC 
weights are estimated using the manufacturing growth 
rates in 1970 and 1980. Rows 3, 4, 5, and 6 show the 
SIV with the donor pool trimmed to the 20, 30, 50, an 
100 closest closest units to the treated unit according 
to the Euclidean distance, respectively.

Notes: The first row replicates columns 1–3 of Table
2 in ADH 2013. In rows 2–6, we apply SIV. The SC
weights are estimated using the manufacturing growth
rates in 1970 and 1980. Rows 3, 4, 5, and 6 show the
SIV with the donor pool trimmed to the 20, 30, 50, an
100 closest closest units to the treated unit according
to the Euclidean distance, respectively.
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Table C.8: Replication of table 3 in Autor et al. (2013)

(1) (2) (3) (4) (5) (6)

IV -0.75 -0.61 -0.54 -0.51 -0.56 -0.60
(0.07) (0.09) (0.09) (0.08) (0.10) (0.10)

SIV -0.70 -0.59 -0.51 -0.50 -0.61 -0.63
(0.07) (0.10) (0.10) (0.09) (0.11) (0.10)

SIV-trim20 -0.76 -0.67 -0.58 -0.57 -0.65 -0.65
(0.10) (0.10) (0.07) (0.08) (0.08) (0.07)

SIV-trim30 -0.77 -0.66 -0.54 -0.53 -0.59 -0.61
(0.09) (0.09) (0.07) (0.07) (0.07) (0.07)

SIV-trim50 -0.82 -0.74 -0.63 -0.62 -0.68 -0.70
(0.08) (0.09) (0.08) (0.08) (0.09) (0.09)

SIV-trim100 -0.80 -0.73 -0.63 -0.62 -0.67 -0.69
(0.07) (0.09) (0.08) (0.08) (0.08) (0.08)

Controls
Percentage of employment in 
manufacturing t-1 No Yes Yes Yes Yes Yes

Percentage of college-educated 
population t-1 No No No Yes No Yes

Percentage of foreign-born 
population t-1 No No No Yes No Yes

Percentage of employment 
among women t-1 No No No Yes No Yes

Percentage of employment in 
routine occupations t-1 No No No No Yes Yes

Average offshorability index of 
occupations t-1 No No No No Yes Yes

Census division dummies No No Yes Yes Yes Yes

1990–2007 stacked first differences

Notes:  The first row replicates columns 1--6 of Table 3 in ADH 2013. Row 2 shows SIV estimates. The 
SC weights are estimated using the manufacturing growth rates in 1970 and 1980. Dependent 
variable: 10 × annual change in manufacturing emp/working-age pop (in % pts). N = 1,444 (722 
commuting zones × 2 time periods). All regressions include a constant and a dummy for the 
2000–2007 period. Routine occupations are defined such that they account for 1/3 of US 
employment in 1980. The offshorability index variable is standardized to mean of 0 and standard 
deviation of 10 in 1980. Robust standard errors in parentheses are clustered on state. Models are 
weighted by start of period CZ share of national population. 
Rows 3, 4, 5, and 6 show the SIV with the donor pool trimmed to the 20, 30, 50, an 100 closest 
closest units to the treated unit according to the Euclidean distance, respectively.
PS: We add the controls in the second step of the algorithm, where we employ 2SLS on the debiased 
outcome, treatment and the instrument. We do not debias the control variables nor use them in 

Notes: The first row replicates columns 1–6 of Table 3 in ADH 2013. Row 2 shows SIV estimates. The SC
weights are estimated using the manufacturing growth rates in 1970 and 1980. Dependent variable: 10 ×
annual change in manufacturing emp/working-age pop (in % pts). N = 1,444 (722 commuting zones × 2 time
periods). All regressions include a constant and a dummy for the 2000–2007 period. Routine occupations
are defined such that they account for 1/3 of US employment in 1980. The offshorability index variable is
standardized to mean of 0 and standard deviation of 10 in 1980. Robust standard errors in parentheses are
clustered on state. Models are weighted by start of period CZ share of national population. Rows 3, 4, 5,
and 6 show the SIV with the donor pool trimmed to the 20, 30, 50, an 100 closest closest units to the treated
unit according to the Euclidean distance, respectively.A37



Figure A.4.5: First stage and SIV fit.

(a) First stage

(b) Ỹit fit.

Notes: Panel (a) shows the first stage regression estimates of log number of orders on Rk
it with week and

store fixed effects. Panel (b) plots Ỹit (debiased log number of orders) for each producer, where we keep the
70 producers with best fit.
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